\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations

Abstract Related Papers Cited by
  • We are concerned with global existence and large-time behavior of solutions to the isentropic electric-magnetohydrodynamic equations in a bounded domain $\Omega\subseteq\mathbb{R}^{N}$, $N=2,\ 3$. We establish the existence and large-time behavior of global weak solutions through a three-level approximation, energy estimates on condition that the adiabatic constant satisfies $\gamma>3/2$.
    Mathematics Subject Classification: Primary: 35Q35, 76N10; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bian and B. Guo, Well-posedness in critical spaces for the full compressible MHD equations, to appear in Acta Math. Sci. Ser. B, 2013.

    [2]

    D. Bian and B. Guo, Blow-up of smooth solutions to the compressible MHD equations, to appear in Appl. Anal., 2013.doi: 10.1080/00036811.2013.766324.

    [3]

    D. Bian and B. Yuan, Local well-posedness in critical spaces for compressible MHD equations, submitted, (2010), 1-30.

    [4]

    D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for compressible MHD equations, Int. J. Dynamical Systems and Differential Equations, 3 (2011), 383-399.doi: 10.1504/IJDSDE.2011.041882.

    [5]

    G.-Q. Chen and D. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data, J. Differemtial Equations, 182 (2002), 344-376.doi: 10.1006/jdeq.2001.4111.

    [6]

    G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.doi: 10.1007/s00033-003-1017-z.

    [7]

    Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal., 72 (2010), 4438-4451.doi: 10.1016/j.na.2010.02.019.

    [8]

    S. Ding, H. Wen, L. Yao and C. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., 44 (2012), 1257-1278.doi: 10.1137/110836663.

    [9]

    B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629.doi: 10.1007/s00220-006-0052-y.

    [10]

    J. Fan, S. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Commun. Math. Phys., 270 (2007), 691-708.doi: 10.1007/s00220-006-0167-1.

    [11]

    E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.

    [12]

    E. Feireisl and H. Petzeltová, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow, Arch. Ration. Mech. Anal., 150 (1999), 77-96.doi: 10.1007/s002050050181.

    [13]

    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976.

    [14]

    H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128.doi: 10.1137/S0036141093247366.

    [15]

    B. Guo and J. Zhang, Global existence of solution for thermally radiative magnetohydrodynamic equations with the displacement current, J. Math. Phys., 54 (2013), 18 pp.doi: 10.1063/1.4776205.

    [16]

    D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.doi: 10.1007/s00033-005-4057-8.

    [17]

    X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203-238.doi: 10.1007/s00205-010-0295-9.

    [18]

    S. Jiang and Q. Jiu, Global existence of solutions to the high-dimensional compressble insentropic Navier-Stokes equations with large initial data, internal notes, 2006.

    [19]

    A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary-value problems for the one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.doi: 10.1016/0021-8928(77)90011-9.

    [20]

    S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387.doi: 10.3792/pjaa.58.384.

    [21]

    L. D. Laudau and E. M. Lifshitz, "Electrodynamics of Continuous Media," Course of Theoretical Physics, Vol. 8, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960.

    [22]

    X. Li, N. Su and D. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyper. Differential Equations, 8 (2011), 415-436.doi: 10.1142/S0219891611002457.

    [23]

    P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 1. Incompressible Models," Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.

    [24]

    P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 2, Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.

    [25]

    T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Memoirs of the American Mathematical Society, 125 (1997).

    [26]

    T.-P. Liu, Z. Xin and T. Yang, Vacuum states of compressible flows, Discrete Contin. Dyn. Syst., 4 (1998), 1-32.doi: 10.3934/dcds.1998.4.1.

    [27]

    T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM. J. Math. Anal., 31 (1999), 1175-1191.doi: 10.1137/S0036141097331044.

    [28]

    H. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293.doi: 10.1016/j.jde.2009.11.031.

    [29]

    P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529.doi: 10.1088/0951-7715/4/2/013.

    [30]

    X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, to appear in Z. Angew. Math. Phys., (2012).doi: 10.1007/s00033-012-0245-5.

    [31]

    S. N. Shore, "An Introduction to Atrophysical Hydrodynamics," Academic Press, New York, 1992.

    [32]

    D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.doi: 10.1137/S0036139902409284.

    [33]

    J. Wu, Generalized MHD equations, J. Differemtial Equations, 195 (2003), 284-312.doi: 10.1016/j.jde.2003.07.007.

    [34]

    J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305.doi: 10.1007/s00021-009-0017-y.

    [35]

    J. Zhang and F. Xie, Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics, J. Differential Equations, 245 (2008), 1853-1882.doi: 10.1016/j.jde.2008.07.010.

    [36]

    Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.doi: 10.1016/j.anihpc.2006.03.014.

    [37]

    Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal., 72 (2010), 3643-3648.doi: 10.1016/j.na.2009.12.045.

    [38]

    Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

    [39]

    Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, to appear in Commun. Math. Phys., (2012).doi: 10.1007/s00220-012-1610-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return