September  2013, 6(3): 481-503. doi: 10.3934/krm.2013.6.481

Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations

1. 

The Graduate School of China Academy of Engineering Physics, Beijing 100088, China

2. 

Institute of Applied Physics & Computational Math., Beijing 100088

Received  January 2013 Revised  April 2013 Published  May 2013

We are concerned with global existence and large-time behavior of solutions to the isentropic electric-magnetohydrodynamic equations in a bounded domain $\Omega\subseteq\mathbb{R}^{N}$, $N=2,\ 3$. We establish the existence and large-time behavior of global weak solutions through a three-level approximation, energy estimates on condition that the adiabatic constant satisfies $\gamma>3/2$.
Citation: Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic and Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481
References:
[1]

D. Bian and B. Guo, Well-posedness in critical spaces for the full compressible MHD equations, to appear in Acta Math. Sci. Ser. B, 2013.

[2]

D. Bian and B. Guo, Blow-up of smooth solutions to the compressible MHD equations, to appear in Appl. Anal., 2013. doi: 10.1080/00036811.2013.766324.

[3]

D. Bian and B. Yuan, Local well-posedness in critical spaces for compressible MHD equations, submitted, (2010), 1-30.

[4]

D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for compressible MHD equations, Int. J. Dynamical Systems and Differential Equations, 3 (2011), 383-399. doi: 10.1504/IJDSDE.2011.041882.

[5]

G.-Q. Chen and D. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data, J. Differemtial Equations, 182 (2002), 344-376. doi: 10.1006/jdeq.2001.4111.

[6]

G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632. doi: 10.1007/s00033-003-1017-z.

[7]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal., 72 (2010), 4438-4451. doi: 10.1016/j.na.2010.02.019.

[8]

S. Ding, H. Wen, L. Yao and C. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., 44 (2012), 1257-1278. doi: 10.1137/110836663.

[9]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629. doi: 10.1007/s00220-006-0052-y.

[10]

J. Fan, S. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Commun. Math. Phys., 270 (2007), 691-708. doi: 10.1007/s00220-006-0167-1.

[11]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.

[12]

E. Feireisl and H. Petzeltová, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow, Arch. Ration. Mech. Anal., 150 (1999), 77-96. doi: 10.1007/s002050050181.

[13]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392. doi: 10.1007/PL00000976.

[14]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128. doi: 10.1137/S0036141093247366.

[15]

B. Guo and J. Zhang, Global existence of solution for thermally radiative magnetohydrodynamic equations with the displacement current, J. Math. Phys., 54 (2013), 18 pp. doi: 10.1063/1.4776205.

[16]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804. doi: 10.1007/s00033-005-4057-8.

[17]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9.

[18]

S. Jiang and Q. Jiu, Global existence of solutions to the high-dimensional compressble insentropic Navier-Stokes equations with large initial data, internal notes, 2006.

[19]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary-value problems for the one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. doi: 10.1016/0021-8928(77)90011-9.

[20]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387. doi: 10.3792/pjaa.58.384.

[21]

L. D. Laudau and E. M. Lifshitz, "Electrodynamics of Continuous Media," Course of Theoretical Physics, Vol. 8, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960.

[22]

X. Li, N. Su and D. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyper. Differential Equations, 8 (2011), 415-436. doi: 10.1142/S0219891611002457.

[23]

P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 1. Incompressible Models," Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.

[24]

P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 2, Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.

[25]

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Memoirs of the American Mathematical Society, 125 (1997).

[26]

T.-P. Liu, Z. Xin and T. Yang, Vacuum states of compressible flows, Discrete Contin. Dyn. Syst., 4 (1998), 1-32. doi: 10.3934/dcds.1998.4.1.

[27]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM. J. Math. Anal., 31 (1999), 1175-1191. doi: 10.1137/S0036141097331044.

[28]

H. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293. doi: 10.1016/j.jde.2009.11.031.

[29]

P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529. doi: 10.1088/0951-7715/4/2/013.

[30]

X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, to appear in Z. Angew. Math. Phys., (2012). doi: 10.1007/s00033-012-0245-5.

[31]

S. N. Shore, "An Introduction to Atrophysical Hydrodynamics," Academic Press, New York, 1992.

[32]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441. doi: 10.1137/S0036139902409284.

[33]

J. Wu, Generalized MHD equations, J. Differemtial Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007.

[34]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305. doi: 10.1007/s00021-009-0017-y.

[35]

J. Zhang and F. Xie, Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics, J. Differential Equations, 245 (2008), 1853-1882. doi: 10.1016/j.jde.2008.07.010.

[36]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505. doi: 10.1016/j.anihpc.2006.03.014.

[37]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal., 72 (2010), 3643-3648. doi: 10.1016/j.na.2009.12.045.

[38]

Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240 doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[39]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, to appear in Commun. Math. Phys., (2012). doi: 10.1007/s00220-012-1610-0.

show all references

References:
[1]

D. Bian and B. Guo, Well-posedness in critical spaces for the full compressible MHD equations, to appear in Acta Math. Sci. Ser. B, 2013.

[2]

D. Bian and B. Guo, Blow-up of smooth solutions to the compressible MHD equations, to appear in Appl. Anal., 2013. doi: 10.1080/00036811.2013.766324.

[3]

D. Bian and B. Yuan, Local well-posedness in critical spaces for compressible MHD equations, submitted, (2010), 1-30.

[4]

D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for compressible MHD equations, Int. J. Dynamical Systems and Differential Equations, 3 (2011), 383-399. doi: 10.1504/IJDSDE.2011.041882.

[5]

G.-Q. Chen and D. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data, J. Differemtial Equations, 182 (2002), 344-376. doi: 10.1006/jdeq.2001.4111.

[6]

G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632. doi: 10.1007/s00033-003-1017-z.

[7]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal., 72 (2010), 4438-4451. doi: 10.1016/j.na.2010.02.019.

[8]

S. Ding, H. Wen, L. Yao and C. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., 44 (2012), 1257-1278. doi: 10.1137/110836663.

[9]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629. doi: 10.1007/s00220-006-0052-y.

[10]

J. Fan, S. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Commun. Math. Phys., 270 (2007), 691-708. doi: 10.1007/s00220-006-0167-1.

[11]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.

[12]

E. Feireisl and H. Petzeltová, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow, Arch. Ration. Mech. Anal., 150 (1999), 77-96. doi: 10.1007/s002050050181.

[13]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392. doi: 10.1007/PL00000976.

[14]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128. doi: 10.1137/S0036141093247366.

[15]

B. Guo and J. Zhang, Global existence of solution for thermally radiative magnetohydrodynamic equations with the displacement current, J. Math. Phys., 54 (2013), 18 pp. doi: 10.1063/1.4776205.

[16]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804. doi: 10.1007/s00033-005-4057-8.

[17]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9.

[18]

S. Jiang and Q. Jiu, Global existence of solutions to the high-dimensional compressble insentropic Navier-Stokes equations with large initial data, internal notes, 2006.

[19]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary-value problems for the one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282. doi: 10.1016/0021-8928(77)90011-9.

[20]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387. doi: 10.3792/pjaa.58.384.

[21]

L. D. Laudau and E. M. Lifshitz, "Electrodynamics of Continuous Media," Course of Theoretical Physics, Vol. 8, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960.

[22]

X. Li, N. Su and D. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyper. Differential Equations, 8 (2011), 415-436. doi: 10.1142/S0219891611002457.

[23]

P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 1. Incompressible Models," Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.

[24]

P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 2, Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.

[25]

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Memoirs of the American Mathematical Society, 125 (1997).

[26]

T.-P. Liu, Z. Xin and T. Yang, Vacuum states of compressible flows, Discrete Contin. Dyn. Syst., 4 (1998), 1-32. doi: 10.3934/dcds.1998.4.1.

[27]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM. J. Math. Anal., 31 (1999), 1175-1191. doi: 10.1137/S0036141097331044.

[28]

H. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293. doi: 10.1016/j.jde.2009.11.031.

[29]

P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529. doi: 10.1088/0951-7715/4/2/013.

[30]

X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, to appear in Z. Angew. Math. Phys., (2012). doi: 10.1007/s00033-012-0245-5.

[31]

S. N. Shore, "An Introduction to Atrophysical Hydrodynamics," Academic Press, New York, 1992.

[32]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441. doi: 10.1137/S0036139902409284.

[33]

J. Wu, Generalized MHD equations, J. Differemtial Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007.

[34]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305. doi: 10.1007/s00021-009-0017-y.

[35]

J. Zhang and F. Xie, Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics, J. Differential Equations, 245 (2008), 1853-1882. doi: 10.1016/j.jde.2008.07.010.

[36]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505. doi: 10.1016/j.anihpc.2006.03.014.

[37]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal., 72 (2010), 3643-3648. doi: 10.1016/j.na.2009.12.045.

[38]

Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240 doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[39]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, to appear in Commun. Math. Phys., (2012). doi: 10.1007/s00220-012-1610-0.

[1]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[2]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[3]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure and Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[4]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure and Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[5]

Colette Guillopé, Samer Israwi, Raafat Talhouk. Large-time existence for one-dimensional Green-Naghdi equations with vorticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2947-2974. doi: 10.3934/dcdss.2021040

[6]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[7]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[8]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic and Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[9]

Kunquan Li, Yaobin Ou. Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 487-522. doi: 10.3934/dcdsb.2021052

[10]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[11]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[12]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[13]

Jishan Fan, Fei Jiang. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Communications on Pure and Applied Analysis, 2016, 15 (1) : 73-90. doi: 10.3934/cpaa.2016.15.73

[14]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[15]

Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739

[16]

Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284

[17]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[18]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[19]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[20]

Qiwei Wu. Large-time behavior of solutions to the bipolar quantum Euler-Poisson system with critical time-dependent over-damping. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022008

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]