September  2013, 6(3): 505-532. doi: 10.3934/krm.2013.6.505

Semi-classical models for the Schrödinger equation with periodic potentials and band crossings

1. 

Department of Mathematical Science, Tsinghua University, Bejing 100084, China

2. 

Department of Mathematics, Institute of Natural Sciences, and MOE Key Lab in Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China

3. 

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, United States

Received  February 2013 Revised  March 2013 Published  May 2013

The Bloch decomposition plays a fundamental role in the study of quantum mechanics and wave propagation in periodic media. Most of the homogenization theory developed for the study of high frequency or semi-classical limit for these problems assumes no crossing of the Bloch bands, resulting in a classical Liouville equation in the limit along each Bloch band.
    In this article, we derive semi-classical models for the Schrödinger equation in periodic media that take into account band crossings, which is important to describe quantum transitions between Bloch bands. Our idea is still based on the Wigner transform (on the Bloch eigenfunctions), but in taking the semi-classical approximation, we retain the off-diagonal entries of the Wigner matrix, which cannot be ignored near the points of band crossings. This results in coupled inhomogeneous Liouville systems that can suitably describe quantum tunneling between bands that are not well-separated. We also develop a domain decomposition method that couples these semi-classical models with the classical Liouville equations (valid away from zones of band crossings) for a multiscale computation. Solutions of these models are numerically compared with those of the Schrödinger equation to justify the validity of these new models for band-crossings.
Citation: Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic & Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505
References:
[1]

N. W. Ashcroft and N. D. Mermin., "Solid State Physics,", Saunders College, (1976).   Google Scholar

[2]

G. Bal, A. Fannjiang, G. Papanicolaou and L. Ryzhik, Radiative transport in a periodic structure,, Journal of Statistical Physics, 95 (1999), 479.  doi: 10.1023/A:1004598015978.  Google Scholar

[3]

P. Bechouche, Semi-classical limits in a crystal with a Coulombian self-consistent potential: Effective mass theorems,, Asymptotic Analysis, 19 (1999), 95.   Google Scholar

[4]

P. Bechouche, N. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal,, Communications on Pure and Applied Mathematics, 54 (2001), 851.  doi: 10.1002/cpa.3004.  Google Scholar

[5]

F. Bloch, Über die quantenmechanik der elektronen in kristallgittern,, Zeitschrift für Physik A Hadrons and Nuclei, 52 (1929), 555.   Google Scholar

[6]

A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu and J. Zwanziger, "The Geometric Phase in Quantum Systems. Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics,", Texts and Monographs in Physics, (2003).   Google Scholar

[7]

R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, Journal of Statistical Physics, 117 (2004), 343.  doi: 10.1023/B:JOSS.0000044070.34410.17.  Google Scholar

[8]

M. S. Child, "Atom-Molecule Collision Theory,", Plenum, (1979).   Google Scholar

[9]

Richard Courant and David Hilbert, "Methods of Mathematical Physics, Differential Equations,", Wiley-VCH, (2008).   Google Scholar

[10]

K. Drukker, Basics of surface hopping in mixed quantum/classical simulations,, Journal of Computational Physics, 153 (1999), 225.  doi: 10.1006/jcph.1999.6287.  Google Scholar

[11]

W. E, J. Lu and X. Yang, Asymptotic analysis of quantum dynamics in crystals: The Bloch-Wigner transform, Bloch dynamics and berry phase,, Acta Mathematicae Applicatae Sinica, (2011), 1.  doi: 10.1007/s10255-011-0095-5.  Google Scholar

[12]

Clotilde Fermanian Kammerer and Caroline Lasser, Wigner measures and codimension two crossings,, J. Math. Phys., 44 (2003), 507.  doi: 10.1063/1.1527221.  Google Scholar

[13]

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Communications on Pure and Applied Mathematics, 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[14]

L. Gosse and N. J. Mauser, Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. III. From ab initio models to WKB for Schrödinger-Poisson,, Journal of Computational Physics, 211 (2006), 326.  doi: 10.1016/j.jcp.2005.05.020.  Google Scholar

[15]

George A. Hagedorn, "Molecular Propagation through Electron Energy Level Crossings,", Mem. Amer. Math. Soc., 111 (1994).   Google Scholar

[16]

I. Horenko, C. Salzmann, B. Schmidt and C. Schütte, Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets,, The Journal of Chemical Physics, 117 (2002), 11075.  doi: 10.1063/1.1522712.  Google Scholar

[17]

Z. Huang, S. Jin, P. A. Markowich and C. Sparber, A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials,, SIAM Journal on Scientific Computing, 29 (2008), 515.  doi: 10.1137/060652026.  Google Scholar

[18]

S. Jin, H. Liu, S. Osher and Y.-H. R. Tsai, Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation,, Journal of Computational Physics, 205 (2005), 222.  doi: 10.1016/j.jcp.2004.11.008.  Google Scholar

[19]

S. Jin, P. Qi and Z. Zhang, An Eulerian surface hopping method for the Schrödinger equation with conical crossings,, SIAM Multiscale Modeling and Simulation, 9 (2011), 258.  doi: 10.1137/090774185.  Google Scholar

[20]

S. Jin and D. Yin, Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction,, Journal of Computational Physics, 227 (2008), 6106.  doi: 10.1016/j.jcp.2008.02.029.  Google Scholar

[21]

L. Landau, Zur theorie der energieubertragung II. Physik,, Physics of the Soviet Union, 2 (1932), 46.   Google Scholar

[22]

C. Lasser, T. Swart and S. Teufel, Construction and validation of a rigorous surface hopping algorithm for conical crossings,, Communications in Mathematical Sciences, 5 (2007), 789.   Google Scholar

[23]

C. Lasser and S. Teufel, Propagation through conical crossings: An asymptotic semigroup,, Comm. Pure Appl. Math., 58 (2005), 1188.  doi: 10.1002/cpa.20087.  Google Scholar

[24]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[25]

P. A. Markowich, N. J. Mauser and F. Poupaud, A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential,, Journal of Mathematical Physics, 35 (1994), 1066.  doi: 10.1063/1.530629.  Google Scholar

[26]

C. C. Martens and J.-Y. Fang, Semiclassical-limit molecular dynamics on multiple electronic surfaces,, Journal of Chemical Physics, 106 (1997), 4918.  doi: 10.1063/1.473541.  Google Scholar

[27]

O. Morandi and F. Schürrer, Wigner model for quantum transport in graphene,, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 5301.   Google Scholar

[28]

G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond,, Communications in Mathematical Physics, 242 (2003), 547.  doi: 10.1007/s00220-003-0950-1.  Google Scholar

[29]

G. Panati, H. Spohn and S. Teufel, Motion of electrons in adiabatically perturbed periodic structures,, in, (2006), 595.  doi: 10.1007/3-540-35657-6_22.  Google Scholar

[30]

D. S. Sholl and J. C. Tully, A generalized surface hopping method,, The Journal of Chemical Physics, 109 (1998), 7702.  doi: 10.1063/1.477416.  Google Scholar

[31]

M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin and P. J. Hakonen, Landau-Zener interferometry in a Cooper-pair box,, Journal of Low Temperature Physics, 146 (2007), 253.  doi: 10.1007/s10909-006-9262-0.  Google Scholar

[32]

G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects,, Phys. Rev. B, 59 (1999), 14915.  doi: 10.1103/PhysRevB.59.14915.  Google Scholar

[33]

J. C. Tully, Molecular dynamics with electronic transitions,, The Journal of Chemical Physics, 93 (1990), 1061.  doi: 10.1063/1.459170.  Google Scholar

[34]

J. C. Tully and R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H with D,, The Journal of Chemical Physics, 55 (1971), 562.   Google Scholar

[35]

E. Wigner, On the quantum correction for thermodynamic equilibrium,, Physical Review, 40 (1932), 749.   Google Scholar

[36]

D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties,, Reviews of Modern Physics, 82 (2010), 1959.  doi: 10.1103/RevModPhys.82.1959.  Google Scholar

[37]

C. Zener, Non-adiabatic crossing of energy levels,, Proceedings of the Royal Society of London, 137 (1932), 696.  doi: 10.1098/rspa.1932.0165.  Google Scholar

show all references

References:
[1]

N. W. Ashcroft and N. D. Mermin., "Solid State Physics,", Saunders College, (1976).   Google Scholar

[2]

G. Bal, A. Fannjiang, G. Papanicolaou and L. Ryzhik, Radiative transport in a periodic structure,, Journal of Statistical Physics, 95 (1999), 479.  doi: 10.1023/A:1004598015978.  Google Scholar

[3]

P. Bechouche, Semi-classical limits in a crystal with a Coulombian self-consistent potential: Effective mass theorems,, Asymptotic Analysis, 19 (1999), 95.   Google Scholar

[4]

P. Bechouche, N. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal,, Communications on Pure and Applied Mathematics, 54 (2001), 851.  doi: 10.1002/cpa.3004.  Google Scholar

[5]

F. Bloch, Über die quantenmechanik der elektronen in kristallgittern,, Zeitschrift für Physik A Hadrons and Nuclei, 52 (1929), 555.   Google Scholar

[6]

A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu and J. Zwanziger, "The Geometric Phase in Quantum Systems. Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics,", Texts and Monographs in Physics, (2003).   Google Scholar

[7]

R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, Journal of Statistical Physics, 117 (2004), 343.  doi: 10.1023/B:JOSS.0000044070.34410.17.  Google Scholar

[8]

M. S. Child, "Atom-Molecule Collision Theory,", Plenum, (1979).   Google Scholar

[9]

Richard Courant and David Hilbert, "Methods of Mathematical Physics, Differential Equations,", Wiley-VCH, (2008).   Google Scholar

[10]

K. Drukker, Basics of surface hopping in mixed quantum/classical simulations,, Journal of Computational Physics, 153 (1999), 225.  doi: 10.1006/jcph.1999.6287.  Google Scholar

[11]

W. E, J. Lu and X. Yang, Asymptotic analysis of quantum dynamics in crystals: The Bloch-Wigner transform, Bloch dynamics and berry phase,, Acta Mathematicae Applicatae Sinica, (2011), 1.  doi: 10.1007/s10255-011-0095-5.  Google Scholar

[12]

Clotilde Fermanian Kammerer and Caroline Lasser, Wigner measures and codimension two crossings,, J. Math. Phys., 44 (2003), 507.  doi: 10.1063/1.1527221.  Google Scholar

[13]

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Communications on Pure and Applied Mathematics, 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[14]

L. Gosse and N. J. Mauser, Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. III. From ab initio models to WKB for Schrödinger-Poisson,, Journal of Computational Physics, 211 (2006), 326.  doi: 10.1016/j.jcp.2005.05.020.  Google Scholar

[15]

George A. Hagedorn, "Molecular Propagation through Electron Energy Level Crossings,", Mem. Amer. Math. Soc., 111 (1994).   Google Scholar

[16]

I. Horenko, C. Salzmann, B. Schmidt and C. Schütte, Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets,, The Journal of Chemical Physics, 117 (2002), 11075.  doi: 10.1063/1.1522712.  Google Scholar

[17]

Z. Huang, S. Jin, P. A. Markowich and C. Sparber, A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials,, SIAM Journal on Scientific Computing, 29 (2008), 515.  doi: 10.1137/060652026.  Google Scholar

[18]

S. Jin, H. Liu, S. Osher and Y.-H. R. Tsai, Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation,, Journal of Computational Physics, 205 (2005), 222.  doi: 10.1016/j.jcp.2004.11.008.  Google Scholar

[19]

S. Jin, P. Qi and Z. Zhang, An Eulerian surface hopping method for the Schrödinger equation with conical crossings,, SIAM Multiscale Modeling and Simulation, 9 (2011), 258.  doi: 10.1137/090774185.  Google Scholar

[20]

S. Jin and D. Yin, Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction,, Journal of Computational Physics, 227 (2008), 6106.  doi: 10.1016/j.jcp.2008.02.029.  Google Scholar

[21]

L. Landau, Zur theorie der energieubertragung II. Physik,, Physics of the Soviet Union, 2 (1932), 46.   Google Scholar

[22]

C. Lasser, T. Swart and S. Teufel, Construction and validation of a rigorous surface hopping algorithm for conical crossings,, Communications in Mathematical Sciences, 5 (2007), 789.   Google Scholar

[23]

C. Lasser and S. Teufel, Propagation through conical crossings: An asymptotic semigroup,, Comm. Pure Appl. Math., 58 (2005), 1188.  doi: 10.1002/cpa.20087.  Google Scholar

[24]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[25]

P. A. Markowich, N. J. Mauser and F. Poupaud, A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential,, Journal of Mathematical Physics, 35 (1994), 1066.  doi: 10.1063/1.530629.  Google Scholar

[26]

C. C. Martens and J.-Y. Fang, Semiclassical-limit molecular dynamics on multiple electronic surfaces,, Journal of Chemical Physics, 106 (1997), 4918.  doi: 10.1063/1.473541.  Google Scholar

[27]

O. Morandi and F. Schürrer, Wigner model for quantum transport in graphene,, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 5301.   Google Scholar

[28]

G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond,, Communications in Mathematical Physics, 242 (2003), 547.  doi: 10.1007/s00220-003-0950-1.  Google Scholar

[29]

G. Panati, H. Spohn and S. Teufel, Motion of electrons in adiabatically perturbed periodic structures,, in, (2006), 595.  doi: 10.1007/3-540-35657-6_22.  Google Scholar

[30]

D. S. Sholl and J. C. Tully, A generalized surface hopping method,, The Journal of Chemical Physics, 109 (1998), 7702.  doi: 10.1063/1.477416.  Google Scholar

[31]

M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin and P. J. Hakonen, Landau-Zener interferometry in a Cooper-pair box,, Journal of Low Temperature Physics, 146 (2007), 253.  doi: 10.1007/s10909-006-9262-0.  Google Scholar

[32]

G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects,, Phys. Rev. B, 59 (1999), 14915.  doi: 10.1103/PhysRevB.59.14915.  Google Scholar

[33]

J. C. Tully, Molecular dynamics with electronic transitions,, The Journal of Chemical Physics, 93 (1990), 1061.  doi: 10.1063/1.459170.  Google Scholar

[34]

J. C. Tully and R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H with D,, The Journal of Chemical Physics, 55 (1971), 562.   Google Scholar

[35]

E. Wigner, On the quantum correction for thermodynamic equilibrium,, Physical Review, 40 (1932), 749.   Google Scholar

[36]

D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties,, Reviews of Modern Physics, 82 (2010), 1959.  doi: 10.1103/RevModPhys.82.1959.  Google Scholar

[37]

C. Zener, Non-adiabatic crossing of energy levels,, Proceedings of the Royal Society of London, 137 (1932), 696.  doi: 10.1098/rspa.1932.0165.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[14]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[15]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[16]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[17]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[18]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[19]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[20]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]