September  2013, 6(3): 545-556. doi: 10.3934/krm.2013.6.545

Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Faculty of Mathematics and and Mathematical Research Center, for Industrial Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

3. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang

Received  November 2012 Revised  February 2013 Published  May 2013

In this paper, logarithmically improved regularity criteria for the generalized Navier-Stokes equations are established in terms of the velocity, vorticity and pressure, respectively. Here $BMO$, the Triebel-Lizorkin and Besov spaces are used, which extend usual Sobolev spaces much. Similar results for the quasi-geostrophic flows and the generalized MHD equations are also listed.
Citation: Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545
References:
[1]

M. Cannone and G. Karch, Incompressible Navier-Stokes equations in abstract Banach spaces, in "Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics" (Sapporo, 2001), Sūrikaisekikenkyūsho Kōkyūroku, No. 1234, (2001), 27-41.

[2]

D. Chae and J. Lee, On the global well-posedness and stability of the Navier-Stokes and the related equations, in "Contributions to Current Challenges in Mathematical Fluid Mechanics," Adv. Math. Fluid Mech., Birkhäuser, Basel, (2004), 31-51.

[3]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.

[4]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations, J. Math. Fluid Mech., 13 (2011), 557-571. doi: 10.1007/s00021-010-0039-5.

[5]

J. Fan and T. Ozawa, Regularity criteria for the generalized Navier-Stokes and related equations, Differential Integral Equations, 21 (2008), 681-691.

[6]

J. Fan and T. Ozawa, On the regularity criteria for the generalized Navier-Stokes equations and Lagrangian averaged Euler equations, Differential Integral Equations, 21 (2008), 443-457.

[7]

J. Jiménez, Hyperviscous vortices, J. Fluid Mech., 279 (1994), 169-176.

[8]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[9]

D. L. Koch and J. F. Brady, Anomalous diffusion in heterogeneous porous media, Phys. Fluids, 31 (1988), 965-973. doi: 10.1063/1.866716.

[10]

H. Kozono and Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations, Math. Nachr., 276 (2004), 63-74. doi: 10.1002/mana.200310213.

[11]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. doi: 10.1007/s002090100332.

[12]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235 (2000), 173-194. doi: 10.1007/s002090000130.

[13]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires," Dunod, Paris, 1969.

[14]

S. Tourville, Existence and uniqueness of solutions for the Navier-Stokes equations with hyperdissipation, J. Math. Anal. Appl., 281 (2003), 62-75. doi: 10.1016/S0022-247X(02)00453-5.

[15]

H. Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.

[16]

J. Wu, The generalized incompressible Navier-Stokes equations in Besov spaces, Dyn. Partial Differ. Equ., 1 (2004), 381-400.

[17]

J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306. doi: 10.1080/03605300701382530.

[18]

Y. Zhang, D. A. Benson and D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561-581. doi: 10.1016/j.advwatres.2009.01.008.

[19]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505. doi: 10.1016/j.anihpc.2006.03.014.

[20]

Y. Zhou, Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows, Discrete Contin. Dyn. Syst., 14 (2006), 525-532. doi: 10.3934/dcds.2006.14.525.

[21]

Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071. doi: 10.1088/0951-7715/21/9/008.

[22]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708. doi: 10.1515/form.2011.079.

[23]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal., 72 (2010), 3643-3648. doi: 10.1016/j.na.2009.12.045.

[24]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010), 193-199. doi: 10.1007/s00033-009-0023-1.

show all references

References:
[1]

M. Cannone and G. Karch, Incompressible Navier-Stokes equations in abstract Banach spaces, in "Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics" (Sapporo, 2001), Sūrikaisekikenkyūsho Kōkyūroku, No. 1234, (2001), 27-41.

[2]

D. Chae and J. Lee, On the global well-posedness and stability of the Navier-Stokes and the related equations, in "Contributions to Current Challenges in Mathematical Fluid Mechanics," Adv. Math. Fluid Mech., Birkhäuser, Basel, (2004), 31-51.

[3]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.

[4]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations, J. Math. Fluid Mech., 13 (2011), 557-571. doi: 10.1007/s00021-010-0039-5.

[5]

J. Fan and T. Ozawa, Regularity criteria for the generalized Navier-Stokes and related equations, Differential Integral Equations, 21 (2008), 681-691.

[6]

J. Fan and T. Ozawa, On the regularity criteria for the generalized Navier-Stokes equations and Lagrangian averaged Euler equations, Differential Integral Equations, 21 (2008), 443-457.

[7]

J. Jiménez, Hyperviscous vortices, J. Fluid Mech., 279 (1994), 169-176.

[8]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[9]

D. L. Koch and J. F. Brady, Anomalous diffusion in heterogeneous porous media, Phys. Fluids, 31 (1988), 965-973. doi: 10.1063/1.866716.

[10]

H. Kozono and Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations, Math. Nachr., 276 (2004), 63-74. doi: 10.1002/mana.200310213.

[11]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. doi: 10.1007/s002090100332.

[12]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235 (2000), 173-194. doi: 10.1007/s002090000130.

[13]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires," Dunod, Paris, 1969.

[14]

S. Tourville, Existence and uniqueness of solutions for the Navier-Stokes equations with hyperdissipation, J. Math. Anal. Appl., 281 (2003), 62-75. doi: 10.1016/S0022-247X(02)00453-5.

[15]

H. Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.

[16]

J. Wu, The generalized incompressible Navier-Stokes equations in Besov spaces, Dyn. Partial Differ. Equ., 1 (2004), 381-400.

[17]

J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306. doi: 10.1080/03605300701382530.

[18]

Y. Zhang, D. A. Benson and D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561-581. doi: 10.1016/j.advwatres.2009.01.008.

[19]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505. doi: 10.1016/j.anihpc.2006.03.014.

[20]

Y. Zhou, Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows, Discrete Contin. Dyn. Syst., 14 (2006), 525-532. doi: 10.3934/dcds.2006.14.525.

[21]

Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071. doi: 10.1088/0951-7715/21/9/008.

[22]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708. doi: 10.1515/form.2011.079.

[23]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal., 72 (2010), 3643-3648. doi: 10.1016/j.na.2009.12.045.

[24]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010), 193-199. doi: 10.1007/s00033-009-0023-1.

[1]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure and Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[2]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[3]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[4]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[5]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[6]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure and Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[7]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[8]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[9]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[10]

Hugo Beirão da Veiga. Navier-Stokes equations: Some questions related to the direction of the vorticity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 203-213. doi: 10.3934/dcdss.2019014

[11]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[12]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[13]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[14]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[15]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[16]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[17]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[18]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[19]

Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151

[20]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]