September  2013, 6(3): 601-623. doi: 10.3934/krm.2013.6.601

Large time behavior of the solution to the Landau Equation with specular reflective boundary condition

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  November 2012 Revised  March 2013 Published  May 2013

In this paper a half space problem for the one-dimensional Landau equation with specular reflective boundary condition is investigated. We show that the solution to the Landau equation converges to a global Maxwellian. Moreover, a time-decay rate is also obtained.
Citation: Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601
References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0.

[2]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,", Cambridge, (1952).

[3]

P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation,, Arch. Ration. Mech. Anal., 138 (1997), 137. doi: 10.1007/s002050050038.

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I, II,, Comm. P.D.E., 25 (2000), 179. doi: 10.1080/03605300008821512.

[5]

R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system,, preprint, (2012).

[6]

Y. Guo, The Landau equation in periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9.

[7]

Y. Guo, Classical solutions to the Boltzmann equation for molecules with angular cutoff,, Arch. Rat. Mech. Anal., 169 (2003), 305. doi: 10.1007/s00205-003-0262-9.

[8]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains,, Arch. Rat. Mech. Anal., 197 (2010), 713. doi: 10.1007/s00205-009-0285-y.

[9]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759. doi: 10.1090/S0894-0347-2011-00722-4.

[10]

L. Hsiao and H. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials,, Quart. Appl. Math., 65 (2007), 281.

[11]

F. Huang, Z. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions,, Adv. Math., 219 (2008), 1246. doi: 10.1016/j.aim.2008.06.014.

[12]

F. Huang and Y. Wang, Large time behavior of the solutions to the Boltzmann equation with specular reflective boundary condition,, J. Differential Equations, 240 (2007), 399. doi: 10.1016/j.jde.2007.05.032.

[13]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97. doi: 10.1007/BF01212358.

[14]

P.-L. Lions, On Boltzmann and Landau equations,, Phil. Trans. R. Soc. Lond. Ser. A., 346 (1994), 191. doi: 10.1098/rsta.1994.0018.

[15]

T.-P. Liu, and Z. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws,, Asian J. Math., 1 (1997), 34.

[16]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011.

[17]

T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation,, Arch. Ration. Mech. Anal., 181 (2006), 333. doi: 10.1007/s00205-005-0414-1.

[18]

T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Comm. Math. Phys., 246 (2004), 133. doi: 10.1007/s00220-003-1030-2.

[19]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1. doi: 10.1007/BF03167088.

[20]

A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas,, Comm. Math. Phys., 144 (1992), 325. doi: 10.1007/BF02101095.

[21]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287. doi: 10.1007/s00205-007-0067-3.

[22]

R. M. Strain and K. Y. Zhu, The Vlasov-Poisson-Landau system in $R^3$,, preprint, (2012).

[23]

S. Ukai and T. Yang, "Mathematical Theory of Boltzmann Equation,", Lecture Notes Series, (2006).

[24]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. doi: 10.1016/S1874-5792(02)80004-0.

[25]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence,, Adv. Diff. Eq., 1 (1996), 793.

[26]

Y.-J. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $R^3$,, SIAM Math. Anal., 44 (2012), 3281. doi: 10.1137/120879129.

[27]

Y. Wang and Z. Jiang, The specular reflective boundary problem for the Boltzmann equation with soft potentials,, Nonlinear Analysis, 75 (2012), 786. doi: 10.1016/j.na.2011.09.011.

[28]

Z. Xin, T. Yang and H. Yu, The Boltzmann equation with soft potentials near the local Maxwellian,, Arch. Ration. Mech. Anal., 206 (2012), 239. doi: 10.1007/s00205-012-0535-2.

[29]

Z. Xin, T. Yang and H. Yu, Nonlinear stability of rarefaction waves for the Landau equation,, preprint, (2010).

[30]

T. Yang and H.-J. Zhao, A half-space problem for the Boltzmann equation with specular reflection boundary condition,, Comm. Math. Phys., 255 (2005), 683. doi: 10.1007/s00220-004-1278-1.

[31]

T. Yang and H.-J. Zhao, A new energy method for the Boltzmann equation,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2195528.

[32]

H. Yu, Cauchy problem of the Vlasov-Poisson-Landau system,, preprint, (2012).

show all references

References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0.

[2]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,", Cambridge, (1952).

[3]

P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation,, Arch. Ration. Mech. Anal., 138 (1997), 137. doi: 10.1007/s002050050038.

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I, II,, Comm. P.D.E., 25 (2000), 179. doi: 10.1080/03605300008821512.

[5]

R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system,, preprint, (2012).

[6]

Y. Guo, The Landau equation in periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9.

[7]

Y. Guo, Classical solutions to the Boltzmann equation for molecules with angular cutoff,, Arch. Rat. Mech. Anal., 169 (2003), 305. doi: 10.1007/s00205-003-0262-9.

[8]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains,, Arch. Rat. Mech. Anal., 197 (2010), 713. doi: 10.1007/s00205-009-0285-y.

[9]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759. doi: 10.1090/S0894-0347-2011-00722-4.

[10]

L. Hsiao and H. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials,, Quart. Appl. Math., 65 (2007), 281.

[11]

F. Huang, Z. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions,, Adv. Math., 219 (2008), 1246. doi: 10.1016/j.aim.2008.06.014.

[12]

F. Huang and Y. Wang, Large time behavior of the solutions to the Boltzmann equation with specular reflective boundary condition,, J. Differential Equations, 240 (2007), 399. doi: 10.1016/j.jde.2007.05.032.

[13]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97. doi: 10.1007/BF01212358.

[14]

P.-L. Lions, On Boltzmann and Landau equations,, Phil. Trans. R. Soc. Lond. Ser. A., 346 (1994), 191. doi: 10.1098/rsta.1994.0018.

[15]

T.-P. Liu, and Z. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws,, Asian J. Math., 1 (1997), 34.

[16]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011.

[17]

T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation,, Arch. Ration. Mech. Anal., 181 (2006), 333. doi: 10.1007/s00205-005-0414-1.

[18]

T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Comm. Math. Phys., 246 (2004), 133. doi: 10.1007/s00220-003-1030-2.

[19]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1. doi: 10.1007/BF03167088.

[20]

A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas,, Comm. Math. Phys., 144 (1992), 325. doi: 10.1007/BF02101095.

[21]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287. doi: 10.1007/s00205-007-0067-3.

[22]

R. M. Strain and K. Y. Zhu, The Vlasov-Poisson-Landau system in $R^3$,, preprint, (2012).

[23]

S. Ukai and T. Yang, "Mathematical Theory of Boltzmann Equation,", Lecture Notes Series, (2006).

[24]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. doi: 10.1016/S1874-5792(02)80004-0.

[25]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence,, Adv. Diff. Eq., 1 (1996), 793.

[26]

Y.-J. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $R^3$,, SIAM Math. Anal., 44 (2012), 3281. doi: 10.1137/120879129.

[27]

Y. Wang and Z. Jiang, The specular reflective boundary problem for the Boltzmann equation with soft potentials,, Nonlinear Analysis, 75 (2012), 786. doi: 10.1016/j.na.2011.09.011.

[28]

Z. Xin, T. Yang and H. Yu, The Boltzmann equation with soft potentials near the local Maxwellian,, Arch. Ration. Mech. Anal., 206 (2012), 239. doi: 10.1007/s00205-012-0535-2.

[29]

Z. Xin, T. Yang and H. Yu, Nonlinear stability of rarefaction waves for the Landau equation,, preprint, (2010).

[30]

T. Yang and H.-J. Zhao, A half-space problem for the Boltzmann equation with specular reflection boundary condition,, Comm. Math. Phys., 255 (2005), 683. doi: 10.1007/s00220-004-1278-1.

[31]

T. Yang and H.-J. Zhao, A new energy method for the Boltzmann equation,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2195528.

[32]

H. Yu, Cauchy problem of the Vlasov-Poisson-Landau system,, preprint, (2012).

[1]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[2]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[3]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[4]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[5]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[6]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[7]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[8]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[9]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[10]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[11]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[12]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[13]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[14]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[15]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[16]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[17]

Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018

[18]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[19]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[20]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]