September  2013, 6(3): 601-623. doi: 10.3934/krm.2013.6.601

Large time behavior of the solution to the Landau Equation with specular reflective boundary condition

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  November 2012 Revised  March 2013 Published  May 2013

In this paper a half space problem for the one-dimensional Landau equation with specular reflective boundary condition is investigated. We show that the solution to the Landau equation converges to a global Maxwellian. Moreover, a time-decay rate is also obtained.
Citation: Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601
References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0. Google Scholar

[2]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,", Cambridge, (1952). Google Scholar

[3]

P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation,, Arch. Ration. Mech. Anal., 138 (1997), 137. doi: 10.1007/s002050050038. Google Scholar

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I, II,, Comm. P.D.E., 25 (2000), 179. doi: 10.1080/03605300008821512. Google Scholar

[5]

R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system,, preprint, (2012). Google Scholar

[6]

Y. Guo, The Landau equation in periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9. Google Scholar

[7]

Y. Guo, Classical solutions to the Boltzmann equation for molecules with angular cutoff,, Arch. Rat. Mech. Anal., 169 (2003), 305. doi: 10.1007/s00205-003-0262-9. Google Scholar

[8]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains,, Arch. Rat. Mech. Anal., 197 (2010), 713. doi: 10.1007/s00205-009-0285-y. Google Scholar

[9]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759. doi: 10.1090/S0894-0347-2011-00722-4. Google Scholar

[10]

L. Hsiao and H. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials,, Quart. Appl. Math., 65 (2007), 281. Google Scholar

[11]

F. Huang, Z. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions,, Adv. Math., 219 (2008), 1246. doi: 10.1016/j.aim.2008.06.014. Google Scholar

[12]

F. Huang and Y. Wang, Large time behavior of the solutions to the Boltzmann equation with specular reflective boundary condition,, J. Differential Equations, 240 (2007), 399. doi: 10.1016/j.jde.2007.05.032. Google Scholar

[13]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97. doi: 10.1007/BF01212358. Google Scholar

[14]

P.-L. Lions, On Boltzmann and Landau equations,, Phil. Trans. R. Soc. Lond. Ser. A., 346 (1994), 191. doi: 10.1098/rsta.1994.0018. Google Scholar

[15]

T.-P. Liu, and Z. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws,, Asian J. Math., 1 (1997), 34. Google Scholar

[16]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[17]

T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation,, Arch. Ration. Mech. Anal., 181 (2006), 333. doi: 10.1007/s00205-005-0414-1. Google Scholar

[18]

T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Comm. Math. Phys., 246 (2004), 133. doi: 10.1007/s00220-003-1030-2. Google Scholar

[19]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1. doi: 10.1007/BF03167088. Google Scholar

[20]

A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas,, Comm. Math. Phys., 144 (1992), 325. doi: 10.1007/BF02101095. Google Scholar

[21]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287. doi: 10.1007/s00205-007-0067-3. Google Scholar

[22]

R. M. Strain and K. Y. Zhu, The Vlasov-Poisson-Landau system in $R^3$,, preprint, (2012). Google Scholar

[23]

S. Ukai and T. Yang, "Mathematical Theory of Boltzmann Equation,", Lecture Notes Series, (2006). Google Scholar

[24]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

[25]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence,, Adv. Diff. Eq., 1 (1996), 793. Google Scholar

[26]

Y.-J. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $R^3$,, SIAM Math. Anal., 44 (2012), 3281. doi: 10.1137/120879129. Google Scholar

[27]

Y. Wang and Z. Jiang, The specular reflective boundary problem for the Boltzmann equation with soft potentials,, Nonlinear Analysis, 75 (2012), 786. doi: 10.1016/j.na.2011.09.011. Google Scholar

[28]

Z. Xin, T. Yang and H. Yu, The Boltzmann equation with soft potentials near the local Maxwellian,, Arch. Ration. Mech. Anal., 206 (2012), 239. doi: 10.1007/s00205-012-0535-2. Google Scholar

[29]

Z. Xin, T. Yang and H. Yu, Nonlinear stability of rarefaction waves for the Landau equation,, preprint, (2010). Google Scholar

[30]

T. Yang and H.-J. Zhao, A half-space problem for the Boltzmann equation with specular reflection boundary condition,, Comm. Math. Phys., 255 (2005), 683. doi: 10.1007/s00220-004-1278-1. Google Scholar

[31]

T. Yang and H.-J. Zhao, A new energy method for the Boltzmann equation,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2195528. Google Scholar

[32]

H. Yu, Cauchy problem of the Vlasov-Poisson-Landau system,, preprint, (2012). Google Scholar

show all references

References:
[1]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0. Google Scholar

[2]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,", Cambridge, (1952). Google Scholar

[3]

P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation,, Arch. Ration. Mech. Anal., 138 (1997), 137. doi: 10.1007/s002050050038. Google Scholar

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I, II,, Comm. P.D.E., 25 (2000), 179. doi: 10.1080/03605300008821512. Google Scholar

[5]

R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system,, preprint, (2012). Google Scholar

[6]

Y. Guo, The Landau equation in periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9. Google Scholar

[7]

Y. Guo, Classical solutions to the Boltzmann equation for molecules with angular cutoff,, Arch. Rat. Mech. Anal., 169 (2003), 305. doi: 10.1007/s00205-003-0262-9. Google Scholar

[8]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains,, Arch. Rat. Mech. Anal., 197 (2010), 713. doi: 10.1007/s00205-009-0285-y. Google Scholar

[9]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759. doi: 10.1090/S0894-0347-2011-00722-4. Google Scholar

[10]

L. Hsiao and H. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials,, Quart. Appl. Math., 65 (2007), 281. Google Scholar

[11]

F. Huang, Z. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions,, Adv. Math., 219 (2008), 1246. doi: 10.1016/j.aim.2008.06.014. Google Scholar

[12]

F. Huang and Y. Wang, Large time behavior of the solutions to the Boltzmann equation with specular reflective boundary condition,, J. Differential Equations, 240 (2007), 399. doi: 10.1016/j.jde.2007.05.032. Google Scholar

[13]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97. doi: 10.1007/BF01212358. Google Scholar

[14]

P.-L. Lions, On Boltzmann and Landau equations,, Phil. Trans. R. Soc. Lond. Ser. A., 346 (1994), 191. doi: 10.1098/rsta.1994.0018. Google Scholar

[15]

T.-P. Liu, and Z. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws,, Asian J. Math., 1 (1997), 34. Google Scholar

[16]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[17]

T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation,, Arch. Ration. Mech. Anal., 181 (2006), 333. doi: 10.1007/s00205-005-0414-1. Google Scholar

[18]

T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Comm. Math. Phys., 246 (2004), 133. doi: 10.1007/s00220-003-1030-2. Google Scholar

[19]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1. doi: 10.1007/BF03167088. Google Scholar

[20]

A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas,, Comm. Math. Phys., 144 (1992), 325. doi: 10.1007/BF02101095. Google Scholar

[21]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287. doi: 10.1007/s00205-007-0067-3. Google Scholar

[22]

R. M. Strain and K. Y. Zhu, The Vlasov-Poisson-Landau system in $R^3$,, preprint, (2012). Google Scholar

[23]

S. Ukai and T. Yang, "Mathematical Theory of Boltzmann Equation,", Lecture Notes Series, (2006). Google Scholar

[24]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

[25]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence,, Adv. Diff. Eq., 1 (1996), 793. Google Scholar

[26]

Y.-J. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $R^3$,, SIAM Math. Anal., 44 (2012), 3281. doi: 10.1137/120879129. Google Scholar

[27]

Y. Wang and Z. Jiang, The specular reflective boundary problem for the Boltzmann equation with soft potentials,, Nonlinear Analysis, 75 (2012), 786. doi: 10.1016/j.na.2011.09.011. Google Scholar

[28]

Z. Xin, T. Yang and H. Yu, The Boltzmann equation with soft potentials near the local Maxwellian,, Arch. Ration. Mech. Anal., 206 (2012), 239. doi: 10.1007/s00205-012-0535-2. Google Scholar

[29]

Z. Xin, T. Yang and H. Yu, Nonlinear stability of rarefaction waves for the Landau equation,, preprint, (2010). Google Scholar

[30]

T. Yang and H.-J. Zhao, A half-space problem for the Boltzmann equation with specular reflection boundary condition,, Comm. Math. Phys., 255 (2005), 683. doi: 10.1007/s00220-004-1278-1. Google Scholar

[31]

T. Yang and H.-J. Zhao, A new energy method for the Boltzmann equation,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2195528. Google Scholar

[32]

H. Yu, Cauchy problem of the Vlasov-Poisson-Landau system,, preprint, (2012). Google Scholar

[1]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[2]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[3]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[4]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[5]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[6]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[7]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[8]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[9]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[10]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[11]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[12]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[13]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[14]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[15]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[16]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[17]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[18]

Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018

[19]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[20]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]