December  2013, 6(4): 671-686. doi: 10.3934/krm.2013.6.671

A Milne problem from a Bose condensate with excitations

1. 

Mathematical Sciences, 41296 Göteborg, Sweden

2. 

LATP, Aix-Marseille University, France

Received  March 2013 Revised  June 2013 Published  November 2013

This paper deals with a half-space linearized problem for the distribution function of the excitations in a Bose gas close to equilibrium. Existence and uniqueness of the solution, as well as its asymptotic properties are proven for a given energy flow. The problem differs from the ones for the classical Boltzmann and related equations, where the hydrodynamic mass flow along the half-line is constant. Here it is no more constant. Instead we use the energy flow which is constant, but no more hydrodynamic.
Citation: Leif Arkeryd, Anne Nouri. A Milne problem from a Bose condensate with excitations. Kinetic & Related Models, 2013, 6 (4) : 671-686. doi: 10.3934/krm.2013.6.671
References:
[1]

L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations - a kinetic model,, Commun. Math. Phys., 310 (2012), 765.  doi: 10.1007/s00220-012-1415-1.  Google Scholar

[2]

L. Arkeryd and A. Nouri, Bose Condensates in Interaction with Excitations - A Two-Component, Space Dependent Model Close to Equilibrium,, in preparation., ().   Google Scholar

[3]

L. Arkeryd and A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model,, J. Stat. Phys., 99 (2000), 993.  doi: 10.1023/A:1018655815285.  Google Scholar

[4]

A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamic systems,, in Lecture Notes on the discretization of the Boltzmann equation (eds. World Sci. Pub. I), 63 (2003), 203.  doi: 10.1142/9789812796905_0008.  Google Scholar

[5]

C. Bardos, R. E. Caflish and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas,, Commun. Pure Appl. Math., 39 (1986), 323.  doi: 10.1002/cpa.3160390304.  Google Scholar

[6]

C. Bardos, F. Golse and Y. Sone, Half-space problems for the Boltzmann equation: A survey,, J. Stat. Phys., 124 (2006), 275.  doi: 10.1007/s10955-006-9077-z.  Google Scholar

[7]

A. V. Bobylev and G. Toscani, Two-dimensional half space problems for the Broadwell discrete velocity model,, Contin. Mech. Thermodyn., 8 (1996), 257.  doi: 10.1007/s001610050043.  Google Scholar

[8]

C. Cercignani, Half-space problems in the kinetic theory of gases,, Trends in applications of pure mathematics to mechanics (Bad Honnef, 249 (1986), 35.  doi: 10.1007/BFb0016381.  Google Scholar

[9]

F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems,, Commun. Pure Appl. Math., 41 (1988), 409.  doi: 10.1002/cpa.3160410403.  Google Scholar

[10]

C. Cercignani, R. Marra and R. Esposito, The Milne problem with a force term,, Transport Theory and Statistical Physics, 27 (1998), 1.  doi: 10.1080/00411459808205139.  Google Scholar

[11]

F. Golse and F. Poupaud, Stationary solutions of the linearized Boltzmann equation in a half-space,, Math. Methods Appl. Sci., 11 (1989), 483.  doi: 10.1002/mma.1670110406.  Google Scholar

[12]

N. Maslova, The Kramers problems in the kinetic theory of gases,, USSR Comput. Math. Phys., 22 (1982), 208.   Google Scholar

[13]

N. Maslova, Nonlinear Evolution Equations,, Kinetic approach. Series on Advances in Mathematics for Applied Sciences, (1993).   Google Scholar

[14]

F. Poupaud, Diffusion approximation of the linear semiconductor equation: analysis of boundary layers,, Asymptotic Analysis, 4 (1991), 293.   Google Scholar

[15]

Y. Sone, Kinetic Theory and Fluid Dynamics,, Birkhauser Boston, (2002).   Google Scholar

[16]

Y. Sone, Molecular Gas Dynamics,, Theory, (2007).  doi: 10.1007/978-0-8176-4573-1.  Google Scholar

[17]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: I. Existence,, Commun. Math. Phys., 236 (2003), 373.  doi: 10.1007/s00220-003-0822-8.  Google Scholar

[18]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear stability of boundary layers of the Boltzmann equation; I. The case $\mathcalM_\infty <-1$,, Commun. Math. Phys., 244 (2004), 99.  doi: 10.1007/s00220-003-0976-4.  Google Scholar

show all references

References:
[1]

L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations - a kinetic model,, Commun. Math. Phys., 310 (2012), 765.  doi: 10.1007/s00220-012-1415-1.  Google Scholar

[2]

L. Arkeryd and A. Nouri, Bose Condensates in Interaction with Excitations - A Two-Component, Space Dependent Model Close to Equilibrium,, in preparation., ().   Google Scholar

[3]

L. Arkeryd and A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model,, J. Stat. Phys., 99 (2000), 993.  doi: 10.1023/A:1018655815285.  Google Scholar

[4]

A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamic systems,, in Lecture Notes on the discretization of the Boltzmann equation (eds. World Sci. Pub. I), 63 (2003), 203.  doi: 10.1142/9789812796905_0008.  Google Scholar

[5]

C. Bardos, R. E. Caflish and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas,, Commun. Pure Appl. Math., 39 (1986), 323.  doi: 10.1002/cpa.3160390304.  Google Scholar

[6]

C. Bardos, F. Golse and Y. Sone, Half-space problems for the Boltzmann equation: A survey,, J. Stat. Phys., 124 (2006), 275.  doi: 10.1007/s10955-006-9077-z.  Google Scholar

[7]

A. V. Bobylev and G. Toscani, Two-dimensional half space problems for the Broadwell discrete velocity model,, Contin. Mech. Thermodyn., 8 (1996), 257.  doi: 10.1007/s001610050043.  Google Scholar

[8]

C. Cercignani, Half-space problems in the kinetic theory of gases,, Trends in applications of pure mathematics to mechanics (Bad Honnef, 249 (1986), 35.  doi: 10.1007/BFb0016381.  Google Scholar

[9]

F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems,, Commun. Pure Appl. Math., 41 (1988), 409.  doi: 10.1002/cpa.3160410403.  Google Scholar

[10]

C. Cercignani, R. Marra and R. Esposito, The Milne problem with a force term,, Transport Theory and Statistical Physics, 27 (1998), 1.  doi: 10.1080/00411459808205139.  Google Scholar

[11]

F. Golse and F. Poupaud, Stationary solutions of the linearized Boltzmann equation in a half-space,, Math. Methods Appl. Sci., 11 (1989), 483.  doi: 10.1002/mma.1670110406.  Google Scholar

[12]

N. Maslova, The Kramers problems in the kinetic theory of gases,, USSR Comput. Math. Phys., 22 (1982), 208.   Google Scholar

[13]

N. Maslova, Nonlinear Evolution Equations,, Kinetic approach. Series on Advances in Mathematics for Applied Sciences, (1993).   Google Scholar

[14]

F. Poupaud, Diffusion approximation of the linear semiconductor equation: analysis of boundary layers,, Asymptotic Analysis, 4 (1991), 293.   Google Scholar

[15]

Y. Sone, Kinetic Theory and Fluid Dynamics,, Birkhauser Boston, (2002).   Google Scholar

[16]

Y. Sone, Molecular Gas Dynamics,, Theory, (2007).  doi: 10.1007/978-0-8176-4573-1.  Google Scholar

[17]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: I. Existence,, Commun. Math. Phys., 236 (2003), 373.  doi: 10.1007/s00220-003-0822-8.  Google Scholar

[18]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear stability of boundary layers of the Boltzmann equation; I. The case $\mathcalM_\infty <-1$,, Commun. Math. Phys., 244 (2004), 99.  doi: 10.1007/s00220-003-0976-4.  Google Scholar

[1]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[2]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[3]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[4]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[9]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[10]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[11]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[14]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[15]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[17]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020396

[18]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[19]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[20]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]