December  2013, 6(4): 687-700. doi: 10.3934/krm.2013.6.687

Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force

1. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

2. 

Department of Mathematics, Jinan Unviersity, Guangdong

Received  March 2013 Revised  June 2013 Published  November 2013

We are concerned with a two-phase flow system consisting of the Vlasov-Fokker-Planck equation for particles coupled to the compressible Euler equations for the fluid through the friction force. Global well-posedness of the Cauchy problem is established in perturbation framework, and rates of convergence of solutions toward equilibrium, which are algebraic in the whole space and exponential on torus, are also obtained under some additional conditions on initial data. The proof is based on the classical energy estimates.
Citation: Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687
References:
[1]

S. Berres, R. Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression,, SIAM J. Appl. Math., 64 (2003), 41. doi: 10.1137/S0036139902408163.

[2]

C. Baranger, G. Baudin, L. Boudin, B. Després, F. Lagoutière, E. Lapébie and T. Takahashi, Liquid jet generation and break-up,, in Numerical Methods for Hyperbolic and Kinetic Equations, 7 (2005), 149. doi: 10.4171/012-1/8.

[3]

C. Baranger, L. Boudin, P.-E Jabin and S. Mancini, A modeling of biospray for the upper airways,, CEMRACS 2004-mathematics and applications to biology and medicine, 14 (2005), 41.

[4]

C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions,, J. Hyperbolic Differ. Equ., 3 (2006), 1. doi: 10.1142/S0219891606000707.

[5]

L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations,, Differential and Integal Equations, 22 (2009), 1247.

[6]

R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects,, SIAM J. Appl. Math., 43 (1983), 885. doi: 10.1137/0143057.

[7]

J. A. Carrillo, R.-J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Euler-Fokker-Planck system,, Kinetic and Related Models, 4 (2011), 227. doi: 10.3934/krm.2011.4.227.

[8]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model,, Comm. Partial Differential Equations, 31 (2006), 1349. doi: 10.1080/03605300500394389.

[9]

M. Chae, K. Kang and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations,, Journal of Differential Equations, 251 (2011), 2431. doi: 10.1016/j.jde.2011.07.016.

[10]

K. Domelevo, Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 591. doi: 10.3934/dcdsb.2002.2.591.

[11]

K. Domelevo and J. M. Roquejoffre, Existence and stability of travelling wave solutions in a kinetic model of two-phase flows,, Comm. PDE, 24 (1999), 61. doi: 10.1080/03605309908821418.

[12]

R.-J. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusions,, Comm. Math. Phys., 300 (2010), 95. doi: 10.1007/s00220-010-1110-z.

[13]

T. Goudon, Asymptotic problems for a kinetic model of two-phase flow,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1371. doi: 10.1017/S030821050000144X.

[14]

T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium,, SIAM J. Math. Anal., 42 (2010), 2177. doi: 10.1137/090776755.

[15]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime,, Indiana Univ. Math. J., 53 (2004), 1495. doi: 10.1512/iumj.2004.53.2508.

[16]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime,, Indiana Univ. Math. J., 53 (2004), 1517. doi: 10.1512/iumj.2004.53.2509.

[17]

T. Goudon, S. Jin and B. Yan, Simulation of fluid-particles flows: Heavy particles, flowing regime, and asymptotic-preserving schemes,, Commun. Math. Sci., 10 (2012), 355. doi: 10.4310/CMS.2012.v10.n1.a15.

[18]

T. Goudon, M. Sy and L. Tiné, A fluid-kinetic model for particulate flows with coagulation and breakup: Stationary solutions, stability, and hydrodynamic regimes,, SIAM Journal on Applied Mathematics, 73 (2013), 401. doi: 10.1137/120861515.

[19]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081. doi: 10.1512/iumj.2004.53.2574.

[20]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations,, Japan J. Indust. Appl. Math., 15 (1998), 51. doi: 10.1007/BF03167396.

[21]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, Thesis, (1983).

[22]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations,, Comm. Math. Phys., 281 (2008), 573. doi: 10.1007/s00220-008-0523-4.

[23]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039. doi: 10.1142/S0218202507002194.

[24]

A. Moussa and F. Sueur, On a Vlasov-Euler system for 2D sprays with gyroscopic effects,, Asymptotic Analysis, 81 (2013), 53. doi: 10.3233/ASY-2012-1123.

[25]

F. A. Williams, Combustion Theory,, Benjamin Cummings, (1985).

show all references

References:
[1]

S. Berres, R. Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression,, SIAM J. Appl. Math., 64 (2003), 41. doi: 10.1137/S0036139902408163.

[2]

C. Baranger, G. Baudin, L. Boudin, B. Després, F. Lagoutière, E. Lapébie and T. Takahashi, Liquid jet generation and break-up,, in Numerical Methods for Hyperbolic and Kinetic Equations, 7 (2005), 149. doi: 10.4171/012-1/8.

[3]

C. Baranger, L. Boudin, P.-E Jabin and S. Mancini, A modeling of biospray for the upper airways,, CEMRACS 2004-mathematics and applications to biology and medicine, 14 (2005), 41.

[4]

C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions,, J. Hyperbolic Differ. Equ., 3 (2006), 1. doi: 10.1142/S0219891606000707.

[5]

L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations,, Differential and Integal Equations, 22 (2009), 1247.

[6]

R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects,, SIAM J. Appl. Math., 43 (1983), 885. doi: 10.1137/0143057.

[7]

J. A. Carrillo, R.-J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Euler-Fokker-Planck system,, Kinetic and Related Models, 4 (2011), 227. doi: 10.3934/krm.2011.4.227.

[8]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model,, Comm. Partial Differential Equations, 31 (2006), 1349. doi: 10.1080/03605300500394389.

[9]

M. Chae, K. Kang and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations,, Journal of Differential Equations, 251 (2011), 2431. doi: 10.1016/j.jde.2011.07.016.

[10]

K. Domelevo, Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 591. doi: 10.3934/dcdsb.2002.2.591.

[11]

K. Domelevo and J. M. Roquejoffre, Existence and stability of travelling wave solutions in a kinetic model of two-phase flows,, Comm. PDE, 24 (1999), 61. doi: 10.1080/03605309908821418.

[12]

R.-J. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusions,, Comm. Math. Phys., 300 (2010), 95. doi: 10.1007/s00220-010-1110-z.

[13]

T. Goudon, Asymptotic problems for a kinetic model of two-phase flow,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1371. doi: 10.1017/S030821050000144X.

[14]

T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium,, SIAM J. Math. Anal., 42 (2010), 2177. doi: 10.1137/090776755.

[15]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime,, Indiana Univ. Math. J., 53 (2004), 1495. doi: 10.1512/iumj.2004.53.2508.

[16]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime,, Indiana Univ. Math. J., 53 (2004), 1517. doi: 10.1512/iumj.2004.53.2509.

[17]

T. Goudon, S. Jin and B. Yan, Simulation of fluid-particles flows: Heavy particles, flowing regime, and asymptotic-preserving schemes,, Commun. Math. Sci., 10 (2012), 355. doi: 10.4310/CMS.2012.v10.n1.a15.

[18]

T. Goudon, M. Sy and L. Tiné, A fluid-kinetic model for particulate flows with coagulation and breakup: Stationary solutions, stability, and hydrodynamic regimes,, SIAM Journal on Applied Mathematics, 73 (2013), 401. doi: 10.1137/120861515.

[19]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081. doi: 10.1512/iumj.2004.53.2574.

[20]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations,, Japan J. Indust. Appl. Math., 15 (1998), 51. doi: 10.1007/BF03167396.

[21]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, Thesis, (1983).

[22]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations,, Comm. Math. Phys., 281 (2008), 573. doi: 10.1007/s00220-008-0523-4.

[23]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039. doi: 10.1142/S0218202507002194.

[24]

A. Moussa and F. Sueur, On a Vlasov-Euler system for 2D sprays with gyroscopic effects,, Asymptotic Analysis, 81 (2013), 53. doi: 10.3233/ASY-2012-1123.

[25]

F. A. Williams, Combustion Theory,, Benjamin Cummings, (1985).

[1]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[2]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[3]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[4]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[5]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[6]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[7]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[8]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[9]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[10]

Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

[11]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[12]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[13]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[14]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[15]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[16]

Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519

[17]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[18]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[19]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[20]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]