• Previous Article
    A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation
  • KRM Home
  • This Issue
  • Next Article
    Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force
December  2013, 6(4): 701-714. doi: 10.3934/krm.2013.6.701

Unstable galaxy models

1. 

School of Mathematical Sciences, Peking University, Beijing, 100871, China, China

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02912, United States

3. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

Received  April 2013 Revised  June 2013 Published  November 2013

The dynamics of collisionless galaxy can be described by the Vlasov-Poisson system. By the Jean's theorem, all the spherically symmetric steady galaxy models are given by a distribution of $\Phi(E,L)$, where $E$ is the particle energy and $L$ the angular momentum. In a celebrated Doremus-Feix-Baumann Theorem [7], the galaxy model $\Phi(E,L)$ is stable if the distribution $\Phi$ is monotonically decreasing with respect to the particle energy $E.$ On the other hand, the stability of $\Phi(E,L)$ remains largely open otherwise. Based on a recent abstract instability criterion of Guo-Lin [11], we constuct examples of unstable galaxy models of $f(E,L)$ and $f\left( E\right) \ $in which $f$ fails to be monotone in $E.$
Citation: Zhiyu Wang, Yan Guo, Zhiwu Lin, Pingwen Zhang. Unstable galaxy models. Kinetic and Related Models, 2013, 6 (4) : 701-714. doi: 10.3934/krm.2013.6.701
References:
[1]

V. A. Antonov, Remarks on the problem of stability in stellar dynamics, Soviet Astr. J., 4 (1960), 859-867.

[2]

V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities, Vestnik Leningradskogo Universiteta, Leningrad University, 1962.

[3]

J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems, Astrophysical Journal, 300 (1986), 112-131. doi: 10.1086/163786.

[4]

P. Bartholomew, On the theory of stability of galaxies, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333-350.

[5]

G. Bertin, Dynamics of Galaxies, Cambridge University Press, Cambridge, 2000.

[6]

J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition), Princeton University Press, 2008.

[7]

J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems, Phys. Rev. Letts, 26 (1971), 725-728.

[8]

D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations, Astronomy and Astrophysics, 50 (1976), 467-470.

[9]

A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I, Springer-Verlag, 1984.

[10]

J. Goodman, An instability test for nonrotating galaxies, Astrophysical Journal, 329 (1988), 612-617. doi: 10.1086/166407.

[11]

Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789-813. doi: 10.1007/s00220-008-0439-z.

[12]

M. Henon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics, 24 (1973), 229-238.

[13]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Comm. Math. Phys., 271 (2007), 489-509. doi: 10.1007/s00220-007-0212-8.

[14]

H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters, The Astrophys. J., 298 (1985), 27-33. doi: 10.1086/163586.

[15]

H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof, Astrophysical Journal, 370 (1991), 312-317.

[16]

D. Merritt, Elliptical galaxy dynamics, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129-168.

[17]

P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies, Kluwer Academic Publishers, 1994.

[18]

J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689-699. doi: 10.1093/mnras/280.3.689.

[19]

J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics, Astrophysical Journal, 276 (1984), 737-745.

[20]

G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb Phil. Soc., 128 (2000), 363-380. doi: 10.1017/S0305004199004193.

show all references

References:
[1]

V. A. Antonov, Remarks on the problem of stability in stellar dynamics, Soviet Astr. J., 4 (1960), 859-867.

[2]

V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities, Vestnik Leningradskogo Universiteta, Leningrad University, 1962.

[3]

J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems, Astrophysical Journal, 300 (1986), 112-131. doi: 10.1086/163786.

[4]

P. Bartholomew, On the theory of stability of galaxies, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333-350.

[5]

G. Bertin, Dynamics of Galaxies, Cambridge University Press, Cambridge, 2000.

[6]

J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition), Princeton University Press, 2008.

[7]

J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems, Phys. Rev. Letts, 26 (1971), 725-728.

[8]

D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations, Astronomy and Astrophysics, 50 (1976), 467-470.

[9]

A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I, Springer-Verlag, 1984.

[10]

J. Goodman, An instability test for nonrotating galaxies, Astrophysical Journal, 329 (1988), 612-617. doi: 10.1086/166407.

[11]

Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789-813. doi: 10.1007/s00220-008-0439-z.

[12]

M. Henon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics, 24 (1973), 229-238.

[13]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Comm. Math. Phys., 271 (2007), 489-509. doi: 10.1007/s00220-007-0212-8.

[14]

H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters, The Astrophys. J., 298 (1985), 27-33. doi: 10.1086/163586.

[15]

H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof, Astrophysical Journal, 370 (1991), 312-317.

[16]

D. Merritt, Elliptical galaxy dynamics, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129-168.

[17]

P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies, Kluwer Academic Publishers, 1994.

[18]

J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689-699. doi: 10.1093/mnras/280.3.689.

[19]

J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics, Astrophysical Journal, 276 (1984), 737-745.

[20]

G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb Phil. Soc., 128 (2000), 363-380. doi: 10.1017/S0305004199004193.

[1]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[2]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[3]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[4]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[5]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[6]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[7]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[8]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[9]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[10]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[11]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021

[12]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[13]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[14]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[15]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[16]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[17]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[18]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic and Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[19]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic and Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[20]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]