• Previous Article
    A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation
  • KRM Home
  • This Issue
  • Next Article
    Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force
December  2013, 6(4): 701-714. doi: 10.3934/krm.2013.6.701

Unstable galaxy models

1. 

School of Mathematical Sciences, Peking University, Beijing, 100871, China, China

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02912, United States

3. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

Received  April 2013 Revised  June 2013 Published  November 2013

The dynamics of collisionless galaxy can be described by the Vlasov-Poisson system. By the Jean's theorem, all the spherically symmetric steady galaxy models are given by a distribution of $\Phi(E,L)$, where $E$ is the particle energy and $L$ the angular momentum. In a celebrated Doremus-Feix-Baumann Theorem [7], the galaxy model $\Phi(E,L)$ is stable if the distribution $\Phi$ is monotonically decreasing with respect to the particle energy $E.$ On the other hand, the stability of $\Phi(E,L)$ remains largely open otherwise. Based on a recent abstract instability criterion of Guo-Lin [11], we constuct examples of unstable galaxy models of $f(E,L)$ and $f\left( E\right) \ $in which $f$ fails to be monotone in $E.$
Citation: Zhiyu Wang, Yan Guo, Zhiwu Lin, Pingwen Zhang. Unstable galaxy models. Kinetic & Related Models, 2013, 6 (4) : 701-714. doi: 10.3934/krm.2013.6.701
References:
[1]

V. A. Antonov, Remarks on the problem of stability in stellar dynamics,, Soviet Astr. J., 4 (1960), 859.   Google Scholar

[2]

V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities,, Vestnik Leningradskogo Universiteta, (1962).   Google Scholar

[3]

J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems,, Astrophysical Journal, 300 (1986), 112.  doi: 10.1086/163786.  Google Scholar

[4]

P. Bartholomew, On the theory of stability of galaxies,, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333.   Google Scholar

[5]

G. Bertin, Dynamics of Galaxies,, Cambridge University Press, (2000).   Google Scholar

[6]

J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition),, Princeton University Press, (2008).   Google Scholar

[7]

J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems,, Phys. Rev. Letts, 26 (1971), 725.   Google Scholar

[8]

D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations,, Astronomy and Astrophysics, 50 (1976), 467.   Google Scholar

[9]

A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I,, Springer-Verlag, (1984).   Google Scholar

[10]

J. Goodman, An instability test for nonrotating galaxies,, Astrophysical Journal, 329 (1988), 612.  doi: 10.1086/166407.  Google Scholar

[11]

Y. Guo and Z. Lin, Unstable and stable galaxy models,, Commun. Math. Phys., 279 (2008), 789.  doi: 10.1007/s00220-008-0439-z.  Google Scholar

[12]

M. Henon, Numerical experiments on the stability of spherical stellar systems,, Astronomy and Astrophysics, 24 (1973), 229.   Google Scholar

[13]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model,, Comm. Math. Phys., 271 (2007), 489.  doi: 10.1007/s00220-007-0212-8.  Google Scholar

[14]

H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters,, The Astrophys. J., 298 (1985), 27.  doi: 10.1086/163586.  Google Scholar

[15]

H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof,, Astrophysical Journal, 370 (1991), 312.   Google Scholar

[16]

D. Merritt, Elliptical galaxy dynamics,, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129.   Google Scholar

[17]

P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies,, Kluwer Academic Publishers, (1994).   Google Scholar

[18]

J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results,, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689.  doi: 10.1093/mnras/280.3.689.  Google Scholar

[19]

J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics,, Astrophysical Journal, 276 (1984), 737.   Google Scholar

[20]

G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics,, Math. Proc. Camb Phil. Soc., 128 (2000), 363.  doi: 10.1017/S0305004199004193.  Google Scholar

show all references

References:
[1]

V. A. Antonov, Remarks on the problem of stability in stellar dynamics,, Soviet Astr. J., 4 (1960), 859.   Google Scholar

[2]

V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities,, Vestnik Leningradskogo Universiteta, (1962).   Google Scholar

[3]

J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems,, Astrophysical Journal, 300 (1986), 112.  doi: 10.1086/163786.  Google Scholar

[4]

P. Bartholomew, On the theory of stability of galaxies,, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333.   Google Scholar

[5]

G. Bertin, Dynamics of Galaxies,, Cambridge University Press, (2000).   Google Scholar

[6]

J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition),, Princeton University Press, (2008).   Google Scholar

[7]

J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems,, Phys. Rev. Letts, 26 (1971), 725.   Google Scholar

[8]

D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations,, Astronomy and Astrophysics, 50 (1976), 467.   Google Scholar

[9]

A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I,, Springer-Verlag, (1984).   Google Scholar

[10]

J. Goodman, An instability test for nonrotating galaxies,, Astrophysical Journal, 329 (1988), 612.  doi: 10.1086/166407.  Google Scholar

[11]

Y. Guo and Z. Lin, Unstable and stable galaxy models,, Commun. Math. Phys., 279 (2008), 789.  doi: 10.1007/s00220-008-0439-z.  Google Scholar

[12]

M. Henon, Numerical experiments on the stability of spherical stellar systems,, Astronomy and Astrophysics, 24 (1973), 229.   Google Scholar

[13]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model,, Comm. Math. Phys., 271 (2007), 489.  doi: 10.1007/s00220-007-0212-8.  Google Scholar

[14]

H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters,, The Astrophys. J., 298 (1985), 27.  doi: 10.1086/163586.  Google Scholar

[15]

H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof,, Astrophysical Journal, 370 (1991), 312.   Google Scholar

[16]

D. Merritt, Elliptical galaxy dynamics,, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129.   Google Scholar

[17]

P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies,, Kluwer Academic Publishers, (1994).   Google Scholar

[18]

J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results,, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689.  doi: 10.1093/mnras/280.3.689.  Google Scholar

[19]

J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics,, Astrophysical Journal, 276 (1984), 737.   Google Scholar

[20]

G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics,, Math. Proc. Camb Phil. Soc., 128 (2000), 363.  doi: 10.1017/S0305004199004193.  Google Scholar

[1]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[2]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[3]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[4]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[5]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[6]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[7]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[8]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[9]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[10]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[13]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[14]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[15]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[16]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[17]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[18]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]