-
Previous Article
A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation
- KRM Home
- This Issue
-
Next Article
Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force
Unstable galaxy models
1. | School of Mathematical Sciences, Peking University, Beijing, 100871, China, China |
2. | Division of Applied Mathematics, Brown University, Providence, RI 02912, United States |
3. | School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States |
References:
[1] |
V. A. Antonov, Remarks on the problem of stability in stellar dynamics, Soviet Astr. J., 4 (1960), 859-867. |
[2] |
V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities, Vestnik Leningradskogo Universiteta, Leningrad University, 1962. |
[3] |
J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems, Astrophysical Journal, 300 (1986), 112-131.
doi: 10.1086/163786. |
[4] |
P. Bartholomew, On the theory of stability of galaxies, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333-350. |
[5] |
G. Bertin, Dynamics of Galaxies, Cambridge University Press, Cambridge, 2000. |
[6] |
J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition), Princeton University Press, 2008. |
[7] |
J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems, Phys. Rev. Letts, 26 (1971), 725-728. |
[8] |
D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations, Astronomy and Astrophysics, 50 (1976), 467-470. |
[9] |
A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I, Springer-Verlag, 1984. |
[10] |
J. Goodman, An instability test for nonrotating galaxies, Astrophysical Journal, 329 (1988), 612-617.
doi: 10.1086/166407. |
[11] |
Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789-813.
doi: 10.1007/s00220-008-0439-z. |
[12] |
M. Henon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics, 24 (1973), 229-238. |
[13] |
Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Comm. Math. Phys., 271 (2007), 489-509.
doi: 10.1007/s00220-007-0212-8. |
[14] |
H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters, The Astrophys. J., 298 (1985), 27-33.
doi: 10.1086/163586. |
[15] |
H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof, Astrophysical Journal, 370 (1991), 312-317. |
[16] |
D. Merritt, Elliptical galaxy dynamics, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129-168. |
[17] |
P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies, Kluwer Academic Publishers, 1994. |
[18] |
J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689-699.
doi: 10.1093/mnras/280.3.689. |
[19] |
J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics, Astrophysical Journal, 276 (1984), 737-745. |
[20] |
G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb Phil. Soc., 128 (2000), 363-380.
doi: 10.1017/S0305004199004193. |
show all references
References:
[1] |
V. A. Antonov, Remarks on the problem of stability in stellar dynamics, Soviet Astr. J., 4 (1960), 859-867. |
[2] |
V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities, Vestnik Leningradskogo Universiteta, Leningrad University, 1962. |
[3] |
J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems, Astrophysical Journal, 300 (1986), 112-131.
doi: 10.1086/163786. |
[4] |
P. Bartholomew, On the theory of stability of galaxies, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333-350. |
[5] |
G. Bertin, Dynamics of Galaxies, Cambridge University Press, Cambridge, 2000. |
[6] |
J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition), Princeton University Press, 2008. |
[7] |
J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems, Phys. Rev. Letts, 26 (1971), 725-728. |
[8] |
D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations, Astronomy and Astrophysics, 50 (1976), 467-470. |
[9] |
A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I, Springer-Verlag, 1984. |
[10] |
J. Goodman, An instability test for nonrotating galaxies, Astrophysical Journal, 329 (1988), 612-617.
doi: 10.1086/166407. |
[11] |
Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789-813.
doi: 10.1007/s00220-008-0439-z. |
[12] |
M. Henon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics, 24 (1973), 229-238. |
[13] |
Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Comm. Math. Phys., 271 (2007), 489-509.
doi: 10.1007/s00220-007-0212-8. |
[14] |
H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters, The Astrophys. J., 298 (1985), 27-33.
doi: 10.1086/163586. |
[15] |
H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof, Astrophysical Journal, 370 (1991), 312-317. |
[16] |
D. Merritt, Elliptical galaxy dynamics, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129-168. |
[17] |
P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies, Kluwer Academic Publishers, 1994. |
[18] |
J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689-699.
doi: 10.1093/mnras/280.3.689. |
[19] |
J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics, Astrophysical Journal, 276 (1984), 737-745. |
[20] |
G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb Phil. Soc., 128 (2000), 363-380.
doi: 10.1017/S0305004199004193. |
[1] |
Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051 |
[2] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[3] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
[4] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[5] |
Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015 |
[6] |
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050 |
[7] |
Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039 |
[8] |
Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046 |
[9] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[10] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004 |
[11] |
Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021 |
[12] |
Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032 |
[13] |
Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049 |
[14] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011 |
[15] |
Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005 |
[16] |
Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723 |
[17] |
Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283 |
[18] |
Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic and Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729 |
[19] |
Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic and Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018 |
[20] |
Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]