December  2013, 6(4): 715-727. doi: 10.3934/krm.2013.6.715

A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation

1. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

2. 

Université de Cergy-Pontoise, CNRS UMR 8088, Mathématiques, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise

3. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray

Received  February 2013 Revised  June 2013 Published  November 2013

We consider the non-linear spatially homogeneous Landau equation with Maxwellian molecules in a close-to-equilibrium framework and show that the Cauchy problem for the fluctuation around the Maxwellian equilibrium distribution enjoys a Gelfand-Shilov regularizing effect in the class $S_{1/2}^{1/2}(\mathbb{R}^d)$, implying the ultra-analyticity and the production of exponential moments of the fluctuation, for any positive time.
Citation: Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinetic & Related Models, 2013, 6 (4) : 715-727. doi: 10.3934/krm.2013.6.715
References:
[1]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.  Google Scholar

[2]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.  Google Scholar

[3]

H. Chen, W.-X. Li and C.-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 673-686. doi: 10.1016/S0252-9602(09)60063-1.  Google Scholar

[4]

H. Chen, W.-X. Li and C.-J. Xu, Analytic smoothness effect of solutions for spatially homogeneous Landau equation, J. Differential Equations, 248 (2010), 77-94. doi: 10.1016/j.jde.2009.08.006.  Google Scholar

[5]

C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[6]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182. doi: 10.1142/S0218202592000119.  Google Scholar

[7]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276. doi: 10.1080/00411459208203923.  Google Scholar

[8]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512.  Google Scholar

[9]

I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2. Spaces of fundamental and generalized functions. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968 [1977].  Google Scholar

[10]

T. Gramchev, S. Pilipović and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces, in New Developments in Pseudo-Differential Operators, Oper. Theory Adv. Appl. Birkhäuser, Basel, 189 (2009), 15-31. doi: 10.1007/978-3-7643-8969-7_2.  Google Scholar

[11]

L. D. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys. Z. Sowjet., 10 (1936) 154. Translation: The transport equation in the case of Coulomb interactions, D. ter Haar (Ed.), Collected papers of L. D. Landau, Pergamon Press, Oxford (1981), 163-170. Google Scholar

[12]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648. doi: 10.3934/krm.2013.6.625.  Google Scholar

[13]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831. doi: 10.1016/j.jde.2013.10.001.  Google Scholar

[14]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.  Google Scholar

[15]

F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo-Differential Operators, Theory and Applications, 4, Birkhäuser Verlag, Basel, 2010. doi: 10.1007/978-3-7643-8512-5.  Google Scholar

[16]

J. Toft, A. Khrennikov, B. Nilsson and S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels of similar class, J. Math. Anal. Appl., 396 (2012), 315-322. doi: 10.1016/j.jmaa.2012.06.025.  Google Scholar

[17]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983. doi: 10.1142/S0218202598000433.  Google Scholar

[18]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.  Google Scholar

show all references

References:
[1]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.  Google Scholar

[2]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.  Google Scholar

[3]

H. Chen, W.-X. Li and C.-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 673-686. doi: 10.1016/S0252-9602(09)60063-1.  Google Scholar

[4]

H. Chen, W.-X. Li and C.-J. Xu, Analytic smoothness effect of solutions for spatially homogeneous Landau equation, J. Differential Equations, 248 (2010), 77-94. doi: 10.1016/j.jde.2009.08.006.  Google Scholar

[5]

C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[6]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182. doi: 10.1142/S0218202592000119.  Google Scholar

[7]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276. doi: 10.1080/00411459208203923.  Google Scholar

[8]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512.  Google Scholar

[9]

I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2. Spaces of fundamental and generalized functions. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968 [1977].  Google Scholar

[10]

T. Gramchev, S. Pilipović and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces, in New Developments in Pseudo-Differential Operators, Oper. Theory Adv. Appl. Birkhäuser, Basel, 189 (2009), 15-31. doi: 10.1007/978-3-7643-8969-7_2.  Google Scholar

[11]

L. D. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys. Z. Sowjet., 10 (1936) 154. Translation: The transport equation in the case of Coulomb interactions, D. ter Haar (Ed.), Collected papers of L. D. Landau, Pergamon Press, Oxford (1981), 163-170. Google Scholar

[12]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648. doi: 10.3934/krm.2013.6.625.  Google Scholar

[13]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831. doi: 10.1016/j.jde.2013.10.001.  Google Scholar

[14]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.  Google Scholar

[15]

F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo-Differential Operators, Theory and Applications, 4, Birkhäuser Verlag, Basel, 2010. doi: 10.1007/978-3-7643-8512-5.  Google Scholar

[16]

J. Toft, A. Khrennikov, B. Nilsson and S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels of similar class, J. Math. Anal. Appl., 396 (2012), 315-322. doi: 10.1016/j.jmaa.2012.06.025.  Google Scholar

[17]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983. doi: 10.1142/S0218202598000433.  Google Scholar

[18]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.  Google Scholar

[1]

Wei-Xi Li, Lvqiao Liu. Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Kinetic & Related Models, 2020, 13 (5) : 1029-1046. doi: 10.3934/krm.2020036

[2]

Yoshinori Morimoto, Chao-Jiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic & Related Models, 2020, 13 (5) : 951-978. doi: 10.3934/krm.2020033

[3]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[4]

Lassaad Aloui, Imen El Khal El Taief. The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds. Mathematical Control & Related Fields, 2020, 10 (4) : 699-714. doi: 10.3934/mcrf.2020016

[5]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[6]

Alain Haraux, Mitsuharu Ôtani. Analyticity and regularity for a class of second order evolution equations. Evolution Equations & Control Theory, 2013, 2 (1) : 101-117. doi: 10.3934/eect.2013.2.101

[7]

Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072

[8]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic & Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[9]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

[10]

Runzhang Xu, Yanbing Yang. Low regularity of solutions to the Rotation-Camassa-Holm type equation with the Coriolis effect. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6507-6527. doi: 10.3934/dcds.2020288

[11]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[12]

Hua Chen, Wei-Xi Li, Chao-Jiang Xu. Propagation of Gevrey regularity for solutions of Landau equations. Kinetic & Related Models, 2008, 1 (3) : 355-368. doi: 10.3934/krm.2008.1.355

[13]

D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527

[14]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[15]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[16]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[17]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[18]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[19]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[20]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (8)

[Back to Top]