Citation: |
[1] |
S. Al-nasur and P. Kashroo, A microscopic-to-macroscopic crowd dynamic model, in Intelligent Transportation Systems Conference, (2006), ITSC '06. IEEE", 606-611.doi: 10.1109/ITSC.2006.1706808. |
[2] |
C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heterog. Media, 6 (2011), 351-381.doi: 10.3934/nhm.2011.6.351. |
[3] |
N. Bellomo and A. Bellouquid, On the modelling of vehicular traffic and crowds by kinetic theory of active particles, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, (eds. G. Naldi et al), Springer, (2010), 273-296.doi: 10.1007/978-0-8176-4946-3_11. |
[4] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.doi: 10.1142/S0218202508003054. |
[5] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463.doi: 10.1137/090746677. |
[6] |
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heterog. Media, 6 (2011), 401-423.doi: 10.3934/nhm.2011.6.401. |
[7] |
F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339-343.doi: 10.1016/j.aml.2011.09.011. |
[8] |
F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing, (ed. B. Perthame), World Scientific, (1994), 171-190. |
[9] |
M. Burger, P. Markowich and J.-F. Pietschmann, Continuous limit of a crowd motion and herding model: analysis and numerical simulations, Kinet. Relat. Models, 4 (2011), 1025-1047.doi: 10.3934/krm.2011.4.1025. |
[10] |
A. Chertock, A. Kurganov, A. Polizzi and I. Timofeyev, Pedestrian Flow Models with Slowdown Interactions, Math. Models Methods Appl. Sci., to appear. |
[11] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.doi: 10.1002/mma.624. |
[12] |
V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247.doi: 10.1142/S0218202508003017. |
[13] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.doi: 10.1137/100797515. |
[14] |
J. E. Cutting, P. M. Vishton and P. A. Braren, How we avoid collisions with stationary and moving objects, Psychological Review, 102 (1995), 627-651. |
[15] |
P. Degond, Macroscopic limits of the Boltzmann equation: A review, in Modeling and Model. Simul. Sci. Eng. Technol.,ds for Kinetic Equations, Model. Simul. Sci. Eng. Technol., Birkhaüser Boston, Boston, MA, (2004), 3-57. |
[16] |
P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, A macroscopic crowd model based on behavioral heuristics, J. Stat. Phys, to appear. arXiv:1304.1927. |
[17] |
P. Degond, A. Frouvelle and J-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci., 23 (2013), 427-456.doi: 10.1007/s00332-012-9157-y. |
[18] |
P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319.doi: 10.1016/j.jcp.2012.11.033. |
[19] |
P. Degond, J. Hua and L. Navoret, Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., 230 (2011), 8057-8088.doi: 10.1016/j.jcp.2011.07.010. |
[20] |
P. Degond, J.-G. Liu and C. Ringhofer, A Nash equilibrium macroscopic closure for kinetic models coupled with Mean-Field Games, submitted. arXiv:1212.6130. |
[21] |
M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: the one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362.doi: 10.1016/j.jde.2010.10.015. |
[22] |
G. Grégoire and H. Chaté, Onset of collective and cohesive motion, Phys. Rev. Lett., 92 (2004), 025702. |
[23] |
S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2009), 77-187.doi: 10.1145/1599470.1599494. |
[24] |
S. J. Guy, S. Curtis, M. C. Lin and D. Manocha, Least-effort trajectories lead to emergent crowd behaviors, Phys. Rev. E, 85 (2012), 016110.doi: 10.1103/PhysRevE.85.016110. |
[25] |
D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310.doi: 10.1002/bs.3830360405. |
[26] |
D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415. |
[27] |
D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286.doi: 10.1103/PhysRevE.51.4282. |
[28] |
D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics, (ed. F. Schweitzer), Gordon and Breach, (1997), 569-577. |
[29] |
L. F. Henderson, On the fluid mechanics of human crowd motion, Transportation Research, 8 (1974), 509-515.doi: 10.1016/0041-1647(74)90027-6. |
[30] |
S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172.doi: 10.1002/oca.727. |
[31] |
L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141.doi: 10.1016/j.trb.2008.06.003. |
[32] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535. |
[33] |
R. L. Hughes, The flow of human crowds, Annual review of fluid mechanics, Ann. Rev. Fluid Mech., Annual Reviews, Palo Alto, CA, 35 (2003), 169-182.doi: 10.1146/annurev.fluid.35.101101.161136. |
[34] |
E. P. Hsu, Stochastic Analysis on Manifolds, Graduate Series in Mathematics, Vol. 38, American Mathematical Society, Providence, Rhode Island, 2002. |
[35] |
Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Phys. A, 389 (2010), 4623-4635.doi: 10.1016/j.physa.2010.05.003. |
[36] |
J.-M. Lasry and P.-L. Lions, Mean field games, Japan J. Math., 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8. |
[37] |
S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498. |
[38] |
M. J. Lighthill and J. B. Whitham, On kinematic waves. I: flow movement in long rivers. II: A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 1749-1766. |
[39] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519.doi: 10.3934/nhm.2011.6.485. |
[40] |
M. Moussaid, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888.doi: 10.1073/pnas.1016507108. |
[41] |
S. Motsch, M. Moussaid, E. G. Guillot, S. Lemercier, J. Pettré, G. Theraulaz, C. Appert-Rolland and P. Degond, Dynamics of cluster formation and traffic efficiency in pedestrian crowds, submitted. |
[42] |
R. Narain, A. Golas, S. Curtis and M. Lin, Aggregate dynamics for dense crowd simulation, ACM Transactions on Graphics (TOG), 28 (2009), 122. |
[43] |
K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732. |
[44] |
J Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics (TOG), 29 (2010), 123. |
[45] |
S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Computer Graphics Forum, 26 (2007), 665-674.doi: 10.1111/j.1467-8659.2007.01090.x. |
[46] |
H. J. Payne, Models of Freeway Traffic and Control, Simulation Councils Inc., La Jolla, California, 1971. |
[47] |
J. Pettré, J. Ondřej, A-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2009), 189-198.doi: 10.1145/1599470.1599495. |
[48] |
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.doi: 10.1007/s00161-009-0100-x. |
[49] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), 25-34. |
[50] |
C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference 1999, San Jose, California, (1999), 763-782. |
[51] |
W. Shao and D. Terzopoulos, Autonomous pedestrians, in Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, (2005), 19-28. |
[52] |
A. Treuille, S. Cooper and Z. Popovic, Continuum crowds, ACM Transactions on Graphics (TOG), 25 (2006), 1160-1168. |
[53] |
J. Van Den Berg, S. Guy, M. Lin and D. Manocha, Reciprocal n-body collision avoidance, in Robotics Research, Springer, 70 (2011), 3-19.doi: 10.1007/978-3-642-19457-3_1. |
[54] |
J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294. |
[55] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.doi: 10.1103/PhysRevLett.75.1226. |
[56] |
G. S. Watson, Distributions on the circle and sphere, J. Appl. Probab., 19 (1982), 265-280. |