December  2013, 6(4): 865-882. doi: 10.3934/krm.2013.6.865

Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, 119076, Singapore, Singapore

Received  August 2013 Revised  September 2013 Published  November 2013

This is a continuation of the paper [5] on the Broadwell model with conservative boundary condition. In this paper, based on the full boundary data obtained by LY algorithm and recombination lemma, we construct the Green's function for the initial boundary value problem. We also establish the pointwise convergence estimate of the solution and nonlinear stability of the global Maxwellian under sufficiently small initial perturbation.
Citation: Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic and Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865
References:
[1]

R.-E. Caflisch and T.-P. Liu, Stability of shock waves for the Broadwell equations, Comm. Math. Phys., 114 (1988), 103-130. doi: 10.1007/BF01218291.

[2]

R.-E. Caflisch, Navier-Stokes and Boltzmann shock profiles for a model of gas dynamics, Comm. Pure. Appl. Math, 32 (1979), 521-554. doi: 10.1002/cpa.3160320404.

[3]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395. doi: 10.3934/nhm.2007.2.383.

[4]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Broadwell model and conservative supersonic boundary, Arch. Ration. Mech. Anal., 200 (2011), 203-223. doi: 10.1007/s00205-010-0344-4.

[5]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Bifurcation on Boundary Data for Linear Broadwell Model with Conservative Boundary Condition,, to appear., (). 

[6]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183. doi: 10.3934/nhm.2006.1.167.

[7]

H.-E. Lin, Nonlinear stability of the initial-boundary value problem for the Broadwell model around a Maxwellian, J. Hyperbolic Differ. Equ., 8 (2011), 131-157. doi: 10.1142/S0219891611002354.

[8]

J.-G. Liu and Z.-P. Xin, Boundary-layer behavior in the fluid-dynamic limit for a nonlinear model Boltzmann equation, Arch. Rational Mech. Anal., 135 (1996), 61-105. doi: 10.1007/BF02198435.

[9]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.

[10]

T.-P. Liu and S.-H. Yu, Boltzmann equation: micro-macro decompostions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.

[11]

T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356. doi: 10.1002/cpa.20172.

[12]

T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267.

[13]

T.-P. Liu and S.-H. Yu, Dirichlet-Neumann kernel for dissipative system in half-space, Bull. Inst. Math. Acad. Sin. (N.S.), 7 (2012), 477-543.

[14]

M. Slemrod and A.-E. Tzavaras, Self-similiar fluid-dynamic limits for the Broadwell system, Arch. Ration. Mech. Anal., 122 (1993), 353-392. doi: 10.1007/BF00375140.

[15]

M. Slemrod, Large time behavior of the Broadwell model of a discrete velocity gas with specularly reflective boundary conditions, Arch. Ration. Mech. Anal., 111 (1990), 323-342. doi: 10.1007/BF00376025.

[16]

Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology. Birkhäuster Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1.

[17]

Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuster Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4573-1.

[18]

Z.-P. Xin, The fluid-dynamic limit of the Broadwell model of the nonlinear Boltzmann equation in the presence of shocks, Comm. Pure Appl. Math, 44 (1991), 679-713. doi: 10.1002/cpa.3160440604.

show all references

References:
[1]

R.-E. Caflisch and T.-P. Liu, Stability of shock waves for the Broadwell equations, Comm. Math. Phys., 114 (1988), 103-130. doi: 10.1007/BF01218291.

[2]

R.-E. Caflisch, Navier-Stokes and Boltzmann shock profiles for a model of gas dynamics, Comm. Pure. Appl. Math, 32 (1979), 521-554. doi: 10.1002/cpa.3160320404.

[3]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395. doi: 10.3934/nhm.2007.2.383.

[4]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Broadwell model and conservative supersonic boundary, Arch. Ration. Mech. Anal., 200 (2011), 203-223. doi: 10.1007/s00205-010-0344-4.

[5]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Bifurcation on Boundary Data for Linear Broadwell Model with Conservative Boundary Condition,, to appear., (). 

[6]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183. doi: 10.3934/nhm.2006.1.167.

[7]

H.-E. Lin, Nonlinear stability of the initial-boundary value problem for the Broadwell model around a Maxwellian, J. Hyperbolic Differ. Equ., 8 (2011), 131-157. doi: 10.1142/S0219891611002354.

[8]

J.-G. Liu and Z.-P. Xin, Boundary-layer behavior in the fluid-dynamic limit for a nonlinear model Boltzmann equation, Arch. Rational Mech. Anal., 135 (1996), 61-105. doi: 10.1007/BF02198435.

[9]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.

[10]

T.-P. Liu and S.-H. Yu, Boltzmann equation: micro-macro decompostions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.

[11]

T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356. doi: 10.1002/cpa.20172.

[12]

T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267.

[13]

T.-P. Liu and S.-H. Yu, Dirichlet-Neumann kernel for dissipative system in half-space, Bull. Inst. Math. Acad. Sin. (N.S.), 7 (2012), 477-543.

[14]

M. Slemrod and A.-E. Tzavaras, Self-similiar fluid-dynamic limits for the Broadwell system, Arch. Ration. Mech. Anal., 122 (1993), 353-392. doi: 10.1007/BF00375140.

[15]

M. Slemrod, Large time behavior of the Broadwell model of a discrete velocity gas with specularly reflective boundary conditions, Arch. Ration. Mech. Anal., 111 (1990), 323-342. doi: 10.1007/BF00376025.

[16]

Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology. Birkhäuster Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1.

[17]

Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuster Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4573-1.

[18]

Z.-P. Xin, The fluid-dynamic limit of the Broadwell model of the nonlinear Boltzmann equation in the presence of shocks, Comm. Pure Appl. Math, 44 (1991), 679-713. doi: 10.1002/cpa.3160440604.

[1]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[2]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[3]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[4]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[5]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[6]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[7]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[8]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[9]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[10]

Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164

[11]

David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037

[12]

Linglong Du. Characteristic half space problem for the Broadwell model. Networks and Heterogeneous Media, 2014, 9 (1) : 97-110. doi: 10.3934/nhm.2014.9.97

[13]

Shijin Deng, Weike Wang, Shih-Hsien Yu. Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary. Networks and Heterogeneous Media, 2007, 2 (3) : 383-395. doi: 10.3934/nhm.2007.2.383

[14]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[15]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[16]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[17]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[18]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[19]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[20]

Kun Li, Ting-Zhu Huang, Liang Li, Ying Zhao, Stéphane Lanteri. A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022084

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]