\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition

Abstract / Introduction Related Papers Cited by
  • This is a continuation of the paper [5] on the Broadwell model with conservative boundary condition. In this paper, based on the full boundary data obtained by LY algorithm and recombination lemma, we construct the Green's function for the initial boundary value problem. We also establish the pointwise convergence estimate of the solution and nonlinear stability of the global Maxwellian under sufficiently small initial perturbation.
    Mathematics Subject Classification: Primary: 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R.-E. Caflisch and T.-P. Liu, Stability of shock waves for the Broadwell equations, Comm. Math. Phys., 114 (1988), 103-130.doi: 10.1007/BF01218291.

    [2]

    R.-E. Caflisch, Navier-Stokes and Boltzmann shock profiles for a model of gas dynamics, Comm. Pure. Appl. Math, 32 (1979), 521-554.doi: 10.1002/cpa.3160320404.

    [3]

    S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395.doi: 10.3934/nhm.2007.2.383.

    [4]

    S.-J. Deng, W.-K. Wang and S.-H. Yu, Broadwell model and conservative supersonic boundary, Arch. Ration. Mech. Anal., 200 (2011), 203-223.doi: 10.1007/s00205-010-0344-4.

    [5]

    S.-J. Deng, W.-K. Wang and S.-H. YuBifurcation on Boundary Data for Linear Broadwell Model with Conservative Boundary Condition, to appear.

    [6]

    C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183.doi: 10.3934/nhm.2006.1.167.

    [7]

    H.-E. Lin, Nonlinear stability of the initial-boundary value problem for the Broadwell model around a Maxwellian, J. Hyperbolic Differ. Equ., 8 (2011), 131-157.doi: 10.1142/S0219891611002354.

    [8]

    J.-G. Liu and Z.-P. Xin, Boundary-layer behavior in the fluid-dynamic limit for a nonlinear model Boltzmann equation, Arch. Rational Mech. Anal., 135 (1996), 61-105.doi: 10.1007/BF02198435.

    [9]

    T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182.doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.

    [10]

    T.-P. Liu and S.-H. Yu, Boltzmann equation: micro-macro decompostions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: 10.1007/s00220-003-1030-2.

    [11]

    T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356.doi: 10.1002/cpa.20172.

    [12]

    T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267.

    [13]

    T.-P. Liu and S.-H. Yu, Dirichlet-Neumann kernel for dissipative system in half-space, Bull. Inst. Math. Acad. Sin. (N.S.), 7 (2012), 477-543.

    [14]

    M. Slemrod and A.-E. Tzavaras, Self-similiar fluid-dynamic limits for the Broadwell system, Arch. Ration. Mech. Anal., 122 (1993), 353-392.doi: 10.1007/BF00375140.

    [15]

    M. Slemrod, Large time behavior of the Broadwell model of a discrete velocity gas with specularly reflective boundary conditions, Arch. Ration. Mech. Anal., 111 (1990), 323-342.doi: 10.1007/BF00376025.

    [16]

    Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology. Birkhäuster Boston, Inc., Boston, MA, 2002.doi: 10.1007/978-1-4612-0061-1.

    [17]

    Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuster Boston, Inc., Boston, MA, 2007.doi: 10.1007/978-0-8176-4573-1.

    [18]

    Z.-P. Xin, The fluid-dynamic limit of the Broadwell model of the nonlinear Boltzmann equation in the presence of shocks, Comm. Pure Appl. Math, 44 (1991), 679-713.doi: 10.1002/cpa.3160440604.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return