\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Energy estimate for a linear symmetric hyperbolic-parabolic system in half line

Abstract / Introduction Related Papers Cited by
  • In the present paper, we study the initial boundary value problem for a linear symmetric hyperbolic-parabolic system in one-dimensional half space. We obtain a priori estimates by using an energy method developed by Matsumura--Nishida for half space problem under the assumption that a stability condition of Shizuta--Kawashima type holds. The method developed in the present paper is applicable to showing the nonlinear stability of boundary layer solutions for a system of viscous conservation laws in half space.
    Mathematics Subject Classification: Primary: 35B35, 76N15; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Kagei and S. Kawashima, Local solvability of an initial boundary value problem for a quasilinear hyperbolic-parabolic system, J. Hyperbolic Differ. Equ., 3 (2006), 195-232.doi: 10.1142/S0219891606000768.

    [2]

    T. Kato, Linear evolution equations of hyperbolic type, II, J. Math. Soc. Japan, 25 (1973), 648-666.doi: 10.2969/jmsj/02540648.

    [3]

    S. Kawashima, Systems of A Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto Univ., 1984.

    [4]

    S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, Sect. A, 106 (1987), 169-194.doi: 10.1017/S0308210500018308.

    [5]

    S. Kawashima, T. Nakamura, S. Nishibata and P. Zhu, Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate, Math. Models Methods Appl. Sci., 20 (2010), 2201-2235.doi: 10.1142/S0218202510004908.

    [6]

    S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.

    [7]

    B. Kwon, M. Suzuki and M. Takayama, Large-time behavior of solutions to an outflow problem for a shallow water model, J. Differential Equations, 255 (2013), 1883-1904.doi: 10.1016/j.jde.2013.05.025.

    [8]

    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

    [9]

    A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.doi: 10.1007/BF01214738.

    [10]

    A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), 449-474.doi: 10.1007/s002200100517.

    [11]

    T. Nakamura and S. Nishibata, Stationary waves for symmetric hyperbolic-parabolic systems in half line and application to fluid dynamics, preprint.

    [12]

    T. Nakamura and S. Nishibata, Convergence rate toward planar stationary waves for compressible viscous fluid in multi-dimensional half space, SIAM J. Math. Anal., 41 (2009), 1757-1791.doi: 10.1137/090755357.

    [13]

    T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyperbolic Differ. Equ., 8 (2011), 651-670.doi: 10.1142/S0219891611002524.

    [14]

    T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111.doi: 10.1016/j.jde.2007.06.016.

    [15]

    Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.

    [16]

    T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.doi: 10.1007/BF03167068.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return