December  2013, 6(4): 893-917. doi: 10.3934/krm.2013.6.893

The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits

1. 

Laboratoire Jacques Louis Lions UMR CNRS 7598, Université Denis Diderot et Université Pierre et, Marie Curie 2 Place Jussieu 75005 Paris, France

2. 

Institut Jean Lamour UMR CNRS 7198, Université de Lorraine BP 70239 54506, Vandoeuvre-lès-Nancy Cedex, France

Received  August 2013 Revised  September 2013 Published  November 2013

This contribution concerns a one-dimensional version of the Vlasov equation dubbed the Vlasov$-$Dirac$-$Benney equation (in short V$-$D$-$B) where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full nonlinear problem and equations of fluids. In particular the connection with the so-called Benney equation leads to new stability results. Eventually the V$-$D$-$B appears to be at the ``cross road" of several problems of mathematical physics which have as far as stability is concerned very similar properties.
Citation: Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893
References:
[1]

V. I. Arnold, An a priori estimate in the theory of hydrodynamical stability,, Izv. Vyss. Ucebn. Zaved. Matematika, 54 (1966), 3.   Google Scholar

[2]

C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas,, J. Math. Phys., 53 (2012), 115621.  doi: 10.1063/1.4765338.  Google Scholar

[3]

D. J. Benney, Instabilities associated with forced nonlinear waves,, Stud. Appl. Math., 60 (1979), 27.   Google Scholar

[4]

N. Besse, On the waterbag continuum,, Arch. Rat. Mech. Anal., 199 (2011), 453.  doi: 10.1007/s00205-010-0392-9.  Google Scholar

[5]

N. Besse, F. Berthelin, Y. Brenier and P. Bertrand, The multi-water-bag equations for collision less kinetic modelization,, Kin. Relat. Models, 2 (2009), 39.  doi: 10.3934/krm.2009.2.39.  Google Scholar

[6]

Y. Brenier, Une Formulation De Type Vlasov-Poisson Pour Les Équations D'Euler Des Fluides Parfaits, Incompressibles,, Inria report No 1070 INRIA-Rocquencourt 1989., (1070).   Google Scholar

[7]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.  doi: 10.1080/03605300008821529.  Google Scholar

[8]

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles,, Nonlinearity, 12 (1999), 495.  doi: 10.1088/0951-7715/12/3/004.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).   Google Scholar

[10]

J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French), J. Funct. Anal., 7 (1971), 386.  doi: 10.1016/0022-1236(71)90027-9.  Google Scholar

[11]

C. Q. Chen and P. G. Lefloch, Compressible Euler equations with general pressure law,, Arch. Rational Mech. Anal., 153 (2000), 221.  doi: 10.1007/s002050000091.  Google Scholar

[12]

C. Q. Chen and P. G. Lefloch, Existence theory for the isentropic Euler equations,, Arch. Rational Mech. Anal., 166 (2003), 81.  doi: 10.1007/s00205-002-0229-2.  Google Scholar

[13]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. Amer. Math. Soc., 78 (1980), 385.  doi: 10.1090/S0002-9939-1980-0553381-X.  Google Scholar

[14]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2000).  doi: 10.1007/3-540-29089-3_14.  Google Scholar

[15]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).   Google Scholar

[16]

M. R. Feix, F. Hohl and L. D. Staton, Nonlinear effects in plasmas,, (eds. Kalman and Feix), (1969), 3.   Google Scholar

[17]

I. M. Gelfand and G. E. Shilov, Generalized Functions,, Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer Academic Press, (1967).   Google Scholar

[18]

P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire,, Séminaire sur les Equations aux Dérivées Partielles, (1993), 1992.   Google Scholar

[19]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[20]

E. Grenier, Limite semi-classique de l'équation de Schrödinger non linéaire en temps petit,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 691.   Google Scholar

[21]

E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time,, Proc. Amer. Math. Soc., 126 (1998), 523.  doi: 10.1090/S0002-9939-98-04164-1.  Google Scholar

[22]

E. Grenier, Limite Quasineutre En Dimension 1,, Journées Equations aux Dérivées Partielles, (1999).   Google Scholar

[23]

Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability,, Indiana Univ. Math. J., 60 (2011), 677.  doi: 10.1512/iumj.2011.60.4193.  Google Scholar

[24]

D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons,, Comm. Partial Differential Equations, 36 (2011), 1385.  doi: 10.1080/03605302.2011.555804.  Google Scholar

[25]

P. E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov,, C. R. Math. Acad. Sci. Paris, 349 (2011), 541.  doi: 10.1016/j.crma.2011.03.024.  Google Scholar

[26]

S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy,, Comm. Pure Appl. Math., 52 (1999), 613.  doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.  Google Scholar

[27]

T. Kato, Perturbation Theory for Linear Operators,, Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[28]

N. Krall and A. Trivelpiece, Principles of Plasma Physics,, International Series in Pure and Apllied Physics MacGraw-Hill Book Company, (1973).   Google Scholar

[29]

J.-L. Lions, Les semi groupes distributions, (French), Port. Math., 19 (1960), 141.   Google Scholar

[30]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[31]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, J. Math. Pures Appl., 86 (2006), 68.  doi: 10.1016/j.matpur.2006.01.005.  Google Scholar

[32]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, 53 (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[33]

S. G Mikhlin and S. Prössdorf, Singular Integral Operators,, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61631-0.  Google Scholar

[34]

R. C. Paley and N. Wiener, Fourier Transforms in the Complex Plane,, AMS Vol 19, 19 (1934).   Google Scholar

[35]

J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications,, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, (1996).   Google Scholar

[36]

O. Penrose, Electronic instabilities of a non uniform plasma,, Phys. of Fluids, 3 (1960), 258.   Google Scholar

[37]

M. Riesz, Sur les fonctions conjuguées,, Math. Zeit., 27 (1928), 218.  doi: 10.1007/BF01171098.  Google Scholar

[38]

E. M. Stein, Harmonic Analysis,, Monographs in Harmonic Analysis, (1993).   Google Scholar

[39]

V. M. Teshukov, On hyperbolicity of long-wave equations,, Soviet Math. Dokl., 32 (1985), 469.   Google Scholar

[40]

V. M. Teshukov, On Cauchy problem for long-wave equations,, In Numerical Methods for Free Boundary Problems, 106 (1992), 331.   Google Scholar

[41]

V. M. Teshukov, Long waves in an eddying barotropic liquid,, J. Appl. Mech. Tech. Phys., 35 (1994), 823.  doi: 10.1007/BF02369574.  Google Scholar

[42]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals,, Oxford, (1948).   Google Scholar

[43]

K. Yosida, Functional Analysis,, Springer-Verlag, (1968).   Google Scholar

[44]

V. E. Zakharov, Benney equations and quasiclassical approximation in the inverse problem method,, (Russian) Funktsional. Anal. i Prilozhen, 14 (1980), 15.   Google Scholar

show all references

References:
[1]

V. I. Arnold, An a priori estimate in the theory of hydrodynamical stability,, Izv. Vyss. Ucebn. Zaved. Matematika, 54 (1966), 3.   Google Scholar

[2]

C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas,, J. Math. Phys., 53 (2012), 115621.  doi: 10.1063/1.4765338.  Google Scholar

[3]

D. J. Benney, Instabilities associated with forced nonlinear waves,, Stud. Appl. Math., 60 (1979), 27.   Google Scholar

[4]

N. Besse, On the waterbag continuum,, Arch. Rat. Mech. Anal., 199 (2011), 453.  doi: 10.1007/s00205-010-0392-9.  Google Scholar

[5]

N. Besse, F. Berthelin, Y. Brenier and P. Bertrand, The multi-water-bag equations for collision less kinetic modelization,, Kin. Relat. Models, 2 (2009), 39.  doi: 10.3934/krm.2009.2.39.  Google Scholar

[6]

Y. Brenier, Une Formulation De Type Vlasov-Poisson Pour Les Équations D'Euler Des Fluides Parfaits, Incompressibles,, Inria report No 1070 INRIA-Rocquencourt 1989., (1070).   Google Scholar

[7]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.  doi: 10.1080/03605300008821529.  Google Scholar

[8]

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles,, Nonlinearity, 12 (1999), 495.  doi: 10.1088/0951-7715/12/3/004.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).   Google Scholar

[10]

J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French), J. Funct. Anal., 7 (1971), 386.  doi: 10.1016/0022-1236(71)90027-9.  Google Scholar

[11]

C. Q. Chen and P. G. Lefloch, Compressible Euler equations with general pressure law,, Arch. Rational Mech. Anal., 153 (2000), 221.  doi: 10.1007/s002050000091.  Google Scholar

[12]

C. Q. Chen and P. G. Lefloch, Existence theory for the isentropic Euler equations,, Arch. Rational Mech. Anal., 166 (2003), 81.  doi: 10.1007/s00205-002-0229-2.  Google Scholar

[13]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. Amer. Math. Soc., 78 (1980), 385.  doi: 10.1090/S0002-9939-1980-0553381-X.  Google Scholar

[14]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2000).  doi: 10.1007/3-540-29089-3_14.  Google Scholar

[15]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).   Google Scholar

[16]

M. R. Feix, F. Hohl and L. D. Staton, Nonlinear effects in plasmas,, (eds. Kalman and Feix), (1969), 3.   Google Scholar

[17]

I. M. Gelfand and G. E. Shilov, Generalized Functions,, Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer Academic Press, (1967).   Google Scholar

[18]

P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire,, Séminaire sur les Equations aux Dérivées Partielles, (1993), 1992.   Google Scholar

[19]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[20]

E. Grenier, Limite semi-classique de l'équation de Schrödinger non linéaire en temps petit,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 691.   Google Scholar

[21]

E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time,, Proc. Amer. Math. Soc., 126 (1998), 523.  doi: 10.1090/S0002-9939-98-04164-1.  Google Scholar

[22]

E. Grenier, Limite Quasineutre En Dimension 1,, Journées Equations aux Dérivées Partielles, (1999).   Google Scholar

[23]

Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability,, Indiana Univ. Math. J., 60 (2011), 677.  doi: 10.1512/iumj.2011.60.4193.  Google Scholar

[24]

D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons,, Comm. Partial Differential Equations, 36 (2011), 1385.  doi: 10.1080/03605302.2011.555804.  Google Scholar

[25]

P. E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov,, C. R. Math. Acad. Sci. Paris, 349 (2011), 541.  doi: 10.1016/j.crma.2011.03.024.  Google Scholar

[26]

S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy,, Comm. Pure Appl. Math., 52 (1999), 613.  doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.  Google Scholar

[27]

T. Kato, Perturbation Theory for Linear Operators,, Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[28]

N. Krall and A. Trivelpiece, Principles of Plasma Physics,, International Series in Pure and Apllied Physics MacGraw-Hill Book Company, (1973).   Google Scholar

[29]

J.-L. Lions, Les semi groupes distributions, (French), Port. Math., 19 (1960), 141.   Google Scholar

[30]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[31]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, J. Math. Pures Appl., 86 (2006), 68.  doi: 10.1016/j.matpur.2006.01.005.  Google Scholar

[32]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, 53 (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[33]

S. G Mikhlin and S. Prössdorf, Singular Integral Operators,, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61631-0.  Google Scholar

[34]

R. C. Paley and N. Wiener, Fourier Transforms in the Complex Plane,, AMS Vol 19, 19 (1934).   Google Scholar

[35]

J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications,, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, (1996).   Google Scholar

[36]

O. Penrose, Electronic instabilities of a non uniform plasma,, Phys. of Fluids, 3 (1960), 258.   Google Scholar

[37]

M. Riesz, Sur les fonctions conjuguées,, Math. Zeit., 27 (1928), 218.  doi: 10.1007/BF01171098.  Google Scholar

[38]

E. M. Stein, Harmonic Analysis,, Monographs in Harmonic Analysis, (1993).   Google Scholar

[39]

V. M. Teshukov, On hyperbolicity of long-wave equations,, Soviet Math. Dokl., 32 (1985), 469.   Google Scholar

[40]

V. M. Teshukov, On Cauchy problem for long-wave equations,, In Numerical Methods for Free Boundary Problems, 106 (1992), 331.   Google Scholar

[41]

V. M. Teshukov, Long waves in an eddying barotropic liquid,, J. Appl. Mech. Tech. Phys., 35 (1994), 823.  doi: 10.1007/BF02369574.  Google Scholar

[42]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals,, Oxford, (1948).   Google Scholar

[43]

K. Yosida, Functional Analysis,, Springer-Verlag, (1968).   Google Scholar

[44]

V. E. Zakharov, Benney equations and quasiclassical approximation in the inverse problem method,, (Russian) Funktsional. Anal. i Prilozhen, 14 (1980), 15.   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]