Citation: |
[1] |
V. I. Arnold, An a priori estimate in the theory of hydrodynamical stability, Izv. Vyss. Ucebn. Zaved. Matematika, 54 (1966), 3-5. |
[2] |
C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53 (2012), 115621-115637.doi: 10.1063/1.4765338. |
[3] |
D. J. Benney, Instabilities associated with forced nonlinear waves, Stud. Appl. Math., 60 (1979), 27-41. |
[4] |
N. Besse, On the waterbag continuum, Arch. Rat. Mech. Anal., 199 (2011), 453-491.doi: 10.1007/s00205-010-0392-9. |
[5] |
N. Besse, F. Berthelin, Y. Brenier and P. Bertrand, The multi-water-bag equations for collision less kinetic modelization, Kin. Relat. Models, 2 (2009), 39-80.doi: 10.3934/krm.2009.2.39. |
[6] |
Y. Brenier, Une Formulation De Type Vlasov-Poisson Pour Les Équations D'Euler Des Fluides Parfaits, Incompressibles, Inria report No 1070 INRIA-Rocquencourt 1989. |
[7] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529. |
[8] |
Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.doi: 10.1088/0951-7715/12/3/004. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011. |
[10] |
J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French) J. Funct. Anal., 7 (1971), 386-446.doi: 10.1016/0022-1236(71)90027-9. |
[11] |
C. Q. Chen and P. G. Lefloch, Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal., 153 (2000), 221-259.doi: 10.1007/s002050000091. |
[12] |
C. Q. Chen and P. G. Lefloch, Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal., 166 (2003), 81-98.doi: 10.1007/s00205-002-0229-2. |
[13] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390.doi: 10.1090/S0002-9939-1980-0553381-X. |
[14] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2000.doi: 10.1007/3-540-29089-3_14. |
[15] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, 2000. |
[16] |
M. R. Feix, F. Hohl and L. D. Staton, Nonlinear effects in plasmas, (eds. Kalman and Feix), Gordon and Breach (1969), 3-21. |
[17] |
I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer Academic Press, New York-London 1967 x+222 pp. |
[18] |
P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Equations aux Dérivées Partielles, 1992-1993, Exp. No. XIII, 13 pp., Ecole Polytech., Palaiseau, 1993. |
[19] |
P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379.doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. |
[20] |
E. Grenier, Limite semi-classique de l'équation de Schrödinger non linéaire en temps petit, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 691-694. |
[21] |
E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.doi: 10.1090/S0002-9939-98-04164-1. |
[22] |
E. Grenier, Limite Quasineutre En Dimension 1, Journées Equations aux Dérivées Partielles, (Saint-Jean-de-Monts, 1999), Exp. No II, 8 pp., Univ. Nantes, Nantes, 1999. |
[23] |
Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J., 60 (2011), 677-711.doi: 10.1512/iumj.2011.60.4193. |
[24] |
D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations, 36 (2011), 1385-1425.doi: 10.1080/03605302.2011.555804. |
[25] |
P. E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov, C. R. Math. Acad. Sci. Paris, 349 (2011), 541-546.doi: 10.1016/j.crma.2011.03.024. |
[26] |
S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L. |
[27] |
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966 xix+592 pp. |
[28] |
N. Krall and A. Trivelpiece, Principles of Plasma Physics, International Series in Pure and Apllied Physics MacGraw-Hill Book Company, 1973. |
[29] |
J.-L. Lions, Les semi groupes distributions, (French) Port. Math., 19 (1960), 141-164. |
[30] |
P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618.doi: 10.4171/RMI/143. |
[31] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.doi: 10.1016/j.matpur.2006.01.005. |
[32] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, Vol 53 Springer-Verlag, 1984.doi: 10.1007/978-1-4612-1116-7. |
[33] |
S. G Mikhlin and S. Prössdorf, Singular Integral Operators, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Springer-Verlag, Berlin, 1986.doi: 10.1007/978-3-642-61631-0. |
[34] |
R. C. Paley and N. Wiener, Fourier Transforms in the Complex Plane, AMS Vol 19, 1934. |
[35] |
J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996. |
[36] |
O. Penrose, Electronic instabilities of a non uniform plasma, Phys. of Fluids, 3 (1960), 258-265. |
[37] |
M. Riesz, Sur les fonctions conjuguées, Math. Zeit., 27 (1928), 218-244.doi: 10.1007/BF01171098. |
[38] |
E. M. Stein, Harmonic Analysis, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. |
[39] |
V. M. Teshukov, On hyperbolicity of long-wave equations, Soviet Math. Dokl., 32 (1985), 469-473. |
[40] |
V. M. Teshukov, On Cauchy problem for long-wave equations, In Numerical Methods for Free Boundary Problems, Birkhäuser, Boston, 106 (1992), 331-338. |
[41] |
V. M. Teshukov, Long waves in an eddying barotropic liquid, J. Appl. Mech. Tech. Phys., 35 (1994), 823-831.doi: 10.1007/BF02369574. |
[42] |
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, Clarendon press, 1948. |
[43] | |
[44] |
V. E. Zakharov, Benney equations and quasiclassical approximation in the inverse problem method, (Russian) Funktsional. Anal. i Prilozhen, 14 (1980), 15-24. |