-
Previous Article
Empirical measures and Vlasov hierarchies
- KRM Home
- This Issue
-
Next Article
Energy estimate for a linear symmetric hyperbolic-parabolic system in half line
The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits
1. | Laboratoire Jacques Louis Lions UMR CNRS 7598, Université Denis Diderot et Université Pierre et, Marie Curie 2 Place Jussieu 75005 Paris, France |
2. | Institut Jean Lamour UMR CNRS 7198, Université de Lorraine BP 70239 54506, Vandoeuvre-lès-Nancy Cedex, France |
References:
[1] |
V. I. Arnold, An a priori estimate in the theory of hydrodynamical stability, Izv. Vyss. Ucebn. Zaved. Matematika, 54 (1966), 3-5. |
[2] |
C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53 (2012), 115621-115637.
doi: 10.1063/1.4765338. |
[3] |
D. J. Benney, Instabilities associated with forced nonlinear waves, Stud. Appl. Math., 60 (1979), 27-41. |
[4] |
N. Besse, On the waterbag continuum, Arch. Rat. Mech. Anal., 199 (2011), 453-491.
doi: 10.1007/s00205-010-0392-9. |
[5] |
N. Besse, F. Berthelin, Y. Brenier and P. Bertrand, The multi-water-bag equations for collision less kinetic modelization, Kin. Relat. Models, 2 (2009), 39-80.
doi: 10.3934/krm.2009.2.39. |
[6] |
Y. Brenier, Une Formulation De Type Vlasov-Poisson Pour Les Équations D'Euler Des Fluides Parfaits, Incompressibles, Inria report No 1070 INRIA-Rocquencourt 1989. |
[7] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.
doi: 10.1080/03605300008821529. |
[8] |
Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.
doi: 10.1088/0951-7715/12/3/004. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011. |
[10] |
J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French) J. Funct. Anal., 7 (1971), 386-446.
doi: 10.1016/0022-1236(71)90027-9. |
[11] |
C. Q. Chen and P. G. Lefloch, Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal., 153 (2000), 221-259.
doi: 10.1007/s002050000091. |
[12] |
C. Q. Chen and P. G. Lefloch, Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal., 166 (2003), 81-98.
doi: 10.1007/s00205-002-0229-2. |
[13] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390.
doi: 10.1090/S0002-9939-1980-0553381-X. |
[14] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-29089-3_14. |
[15] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, 2000. |
[16] |
M. R. Feix, F. Hohl and L. D. Staton, Nonlinear effects in plasmas, (eds. Kalman and Feix), Gordon and Breach (1969), 3-21. |
[17] |
I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer Academic Press, New York-London 1967 x+222 pp. |
[18] |
P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Equations aux Dérivées Partielles, 1992-1993, Exp. No. XIII, 13 pp., Ecole Polytech., Palaiseau, 1993. |
[19] |
P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379.
doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. |
[20] |
E. Grenier, Limite semi-classique de l'équation de Schrödinger non linéaire en temps petit, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 691-694. |
[21] |
E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.
doi: 10.1090/S0002-9939-98-04164-1. |
[22] |
E. Grenier, Limite Quasineutre En Dimension 1, Journées Equations aux Dérivées Partielles, (Saint-Jean-de-Monts, 1999), Exp. No II, 8 pp., Univ. Nantes, Nantes, 1999. |
[23] |
Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J., 60 (2011), 677-711.
doi: 10.1512/iumj.2011.60.4193. |
[24] |
D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations, 36 (2011), 1385-1425.
doi: 10.1080/03605302.2011.555804. |
[25] |
P. E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov, C. R. Math. Acad. Sci. Paris, 349 (2011), 541-546.
doi: 10.1016/j.crma.2011.03.024. |
[26] |
S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.
doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L. |
[27] |
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966 xix+592 pp. |
[28] |
N. Krall and A. Trivelpiece, Principles of Plasma Physics, International Series in Pure and Apllied Physics MacGraw-Hill Book Company, 1973. |
[29] |
J.-L. Lions, Les semi groupes distributions, (French) Port. Math., 19 (1960), 141-164. |
[30] |
P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618.
doi: 10.4171/RMI/143. |
[31] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.
doi: 10.1016/j.matpur.2006.01.005. |
[32] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, Vol 53 Springer-Verlag, 1984.
doi: 10.1007/978-1-4612-1116-7. |
[33] |
S. G Mikhlin and S. Prössdorf, Singular Integral Operators, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61631-0. |
[34] |
R. C. Paley and N. Wiener, Fourier Transforms in the Complex Plane, AMS Vol 19, 1934. |
[35] |
J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996. |
[36] |
O. Penrose, Electronic instabilities of a non uniform plasma, Phys. of Fluids, 3 (1960), 258-265. |
[37] |
M. Riesz, Sur les fonctions conjuguées, Math. Zeit., 27 (1928), 218-244.
doi: 10.1007/BF01171098. |
[38] |
E. M. Stein, Harmonic Analysis, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. |
[39] |
V. M. Teshukov, On hyperbolicity of long-wave equations, Soviet Math. Dokl., 32 (1985), 469-473. |
[40] |
V. M. Teshukov, On Cauchy problem for long-wave equations, In Numerical Methods for Free Boundary Problems, Birkhäuser, Boston, 106 (1992), 331-338. |
[41] |
V. M. Teshukov, Long waves in an eddying barotropic liquid, J. Appl. Mech. Tech. Phys., 35 (1994), 823-831.
doi: 10.1007/BF02369574. |
[42] |
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, Clarendon press, 1948. |
[43] | |
[44] |
V. E. Zakharov, Benney equations and quasiclassical approximation in the inverse problem method, (Russian) Funktsional. Anal. i Prilozhen, 14 (1980), 15-24. |
show all references
References:
[1] |
V. I. Arnold, An a priori estimate in the theory of hydrodynamical stability, Izv. Vyss. Ucebn. Zaved. Matematika, 54 (1966), 3-5. |
[2] |
C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53 (2012), 115621-115637.
doi: 10.1063/1.4765338. |
[3] |
D. J. Benney, Instabilities associated with forced nonlinear waves, Stud. Appl. Math., 60 (1979), 27-41. |
[4] |
N. Besse, On the waterbag continuum, Arch. Rat. Mech. Anal., 199 (2011), 453-491.
doi: 10.1007/s00205-010-0392-9. |
[5] |
N. Besse, F. Berthelin, Y. Brenier and P. Bertrand, The multi-water-bag equations for collision less kinetic modelization, Kin. Relat. Models, 2 (2009), 39-80.
doi: 10.3934/krm.2009.2.39. |
[6] |
Y. Brenier, Une Formulation De Type Vlasov-Poisson Pour Les Équations D'Euler Des Fluides Parfaits, Incompressibles, Inria report No 1070 INRIA-Rocquencourt 1989. |
[7] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.
doi: 10.1080/03605300008821529. |
[8] |
Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.
doi: 10.1088/0951-7715/12/3/004. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011. |
[10] |
J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French) J. Funct. Anal., 7 (1971), 386-446.
doi: 10.1016/0022-1236(71)90027-9. |
[11] |
C. Q. Chen and P. G. Lefloch, Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal., 153 (2000), 221-259.
doi: 10.1007/s002050000091. |
[12] |
C. Q. Chen and P. G. Lefloch, Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal., 166 (2003), 81-98.
doi: 10.1007/s00205-002-0229-2. |
[13] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390.
doi: 10.1090/S0002-9939-1980-0553381-X. |
[14] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-29089-3_14. |
[15] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, 2000. |
[16] |
M. R. Feix, F. Hohl and L. D. Staton, Nonlinear effects in plasmas, (eds. Kalman and Feix), Gordon and Breach (1969), 3-21. |
[17] |
I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer Academic Press, New York-London 1967 x+222 pp. |
[18] |
P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Equations aux Dérivées Partielles, 1992-1993, Exp. No. XIII, 13 pp., Ecole Polytech., Palaiseau, 1993. |
[19] |
P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379.
doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. |
[20] |
E. Grenier, Limite semi-classique de l'équation de Schrödinger non linéaire en temps petit, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 691-694. |
[21] |
E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.
doi: 10.1090/S0002-9939-98-04164-1. |
[22] |
E. Grenier, Limite Quasineutre En Dimension 1, Journées Equations aux Dérivées Partielles, (Saint-Jean-de-Monts, 1999), Exp. No II, 8 pp., Univ. Nantes, Nantes, 1999. |
[23] |
Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J., 60 (2011), 677-711.
doi: 10.1512/iumj.2011.60.4193. |
[24] |
D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations, 36 (2011), 1385-1425.
doi: 10.1080/03605302.2011.555804. |
[25] |
P. E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov, C. R. Math. Acad. Sci. Paris, 349 (2011), 541-546.
doi: 10.1016/j.crma.2011.03.024. |
[26] |
S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.
doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L. |
[27] |
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966 xix+592 pp. |
[28] |
N. Krall and A. Trivelpiece, Principles of Plasma Physics, International Series in Pure and Apllied Physics MacGraw-Hill Book Company, 1973. |
[29] |
J.-L. Lions, Les semi groupes distributions, (French) Port. Math., 19 (1960), 141-164. |
[30] |
P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618.
doi: 10.4171/RMI/143. |
[31] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.
doi: 10.1016/j.matpur.2006.01.005. |
[32] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, Vol 53 Springer-Verlag, 1984.
doi: 10.1007/978-1-4612-1116-7. |
[33] |
S. G Mikhlin and S. Prössdorf, Singular Integral Operators, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61631-0. |
[34] |
R. C. Paley and N. Wiener, Fourier Transforms in the Complex Plane, AMS Vol 19, 1934. |
[35] |
J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996. |
[36] |
O. Penrose, Electronic instabilities of a non uniform plasma, Phys. of Fluids, 3 (1960), 258-265. |
[37] |
M. Riesz, Sur les fonctions conjuguées, Math. Zeit., 27 (1928), 218-244.
doi: 10.1007/BF01171098. |
[38] |
E. M. Stein, Harmonic Analysis, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. |
[39] |
V. M. Teshukov, On hyperbolicity of long-wave equations, Soviet Math. Dokl., 32 (1985), 469-473. |
[40] |
V. M. Teshukov, On Cauchy problem for long-wave equations, In Numerical Methods for Free Boundary Problems, Birkhäuser, Boston, 106 (1992), 331-338. |
[41] |
V. M. Teshukov, Long waves in an eddying barotropic liquid, J. Appl. Mech. Tech. Phys., 35 (1994), 823-831.
doi: 10.1007/BF02369574. |
[42] |
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, Clarendon press, 1948. |
[43] | |
[44] |
V. E. Zakharov, Benney equations and quasiclassical approximation in the inverse problem method, (Russian) Funktsional. Anal. i Prilozhen, 14 (1980), 15-24. |
[1] |
Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems and Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507 |
[2] |
Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335 |
[3] |
Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2011, 5 (1) : 1-17. doi: 10.3934/ipi.2011.5.1 |
[4] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[5] |
Zonghao Li, Caibin Zeng. Center manifolds for ill-posed stochastic evolution equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2483-2499. doi: 10.3934/dcdsb.2021142 |
[6] |
Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 |
[7] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[8] |
Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems and Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289 |
[9] |
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems and Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971 |
[10] |
W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111 |
[11] |
Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479 |
[12] |
Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems and Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409 |
[13] |
Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259 |
[14] |
Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011 |
[15] |
Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009 |
[16] |
Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028 |
[17] |
Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems and Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047 |
[18] |
Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062 |
[19] |
Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155 |
[20] |
T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems and Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]