December  2013, 6(4): 955-967. doi: 10.3934/krm.2013.6.955

Some properties of the kinetic equation for electron transport in semiconductors

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39 - 10117 Berlin

Received  June 2013 Revised  September 2013 Published  November 2013

The paper studies the kinetic equation for electron transport in semiconductors. New formulas for the heat generation rate are derived by analyzing the basic scattering mechanisms. In addition, properties of the steady state distribution are discussed and possible extensions of the deviational particle Monte Carlo method to the area of electron transport are proposed.
Citation: Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955
References:
[1]

L. L. Baker and N. G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann equation,, Phys. Fluids, 17 (2005).  doi: 10.1063/1.1899210.  Google Scholar

[2]

M. H. A. Davis, Markov Models and Optimization,, Monographs on Statistics and Applied Probability, (1993).   Google Scholar

[3]

A. Eibeck and W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations,, Ann. Appl. Probab., 13 (2003), 845.  doi: 10.1214/aoap/1060202829.  Google Scholar

[4]

M. V. Fischetti, S. E. Laux, P. M. Solomon and A. Kumar, Thirty years of Monte Carlo simulations of electronic transport in semiconductors: Their relevance to science and mainstream VLSI technology,, Journal of Computational Electronics, 3 (2004), 287.   Google Scholar

[5]

T. M. M. Homolle and N. G. Hadjiconstantinou, Low-variance deviational simulation Monte Carlo,, Phys. Fluids, 19 (2007), 1.   Google Scholar

[6]

C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation,, Springer, (1989).  doi: 10.1007/978-3-7091-6963-6.  Google Scholar

[7]

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,, Rev. Modern Phys., 55 (1983), 645.  doi: 10.1103/RevModPhys.55.645.  Google Scholar

[8]

A. Jüngel, Transport Equations for Semiconductors,, vol. 773 of Lecture Notes in Physics, (2009).  doi: 10.1007/978-3-540-89526-8.  Google Scholar

[9]

A. Majorana, Trend to equilibrium of electron gas in a semiconductor according to the Boltzmann equation,, Transport Theory Statist. Phys., 27 (1998), 547.  doi: 10.1080/00411459808205642.  Google Scholar

[10]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer-Verlag, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[11]

O. Muscato and V. Di Stefano, An energy transport model describing heat generation and conduction in silicon semiconductors,, J. Stat. Phys., 144 (2011), 171.  doi: 10.1007/s10955-011-0247-2.  Google Scholar

[12]

O. Muscato and V. Di Stefano, Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations,, COMPEL, 30 (2011), 519.  doi: 10.1108/03321641111101050.  Google Scholar

[13]

O. Muscato, V. Di Stefano and W. Wagner, A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation,, Comput. Math. Appl., 65 (2013), 520.  doi: 10.1016/j.camwa.2012.03.100.  Google Scholar

[14]

O. Muscato, W. Wagner and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors,, M2AN Math. Model. Numer. Anal., 44 (2010), 1049.  doi: 10.1051/m2an/2010051.  Google Scholar

[15]

O. Muscato, W. Wagner and V. Di Stefano, Properties of the steady state distribution of electrons in semiconductors,, Kinetic and Related Models, 4 (2011), 808.  doi: 10.3934/krm.2011.4.809.  Google Scholar

[16]

C. Ni, Z. Aksamija, J. Y. Murthy and U. Ravaioli, Coupled electro-thermal simulation of MOSFETs,, Journal of Computational Electronics, 11 (2012), 93.   Google Scholar

[17]

J.-P. M. Péraud and N. G. Hadjiconstantinou, Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations,, Phys. Rev. B, 84 (2011), 1.   Google Scholar

[18]

J.-P. M. Péraud and N. G. Hadjiconstantinou, An alternative approach to efficient simulation of micro/nanoscale phonon transport,, Applied Physics Letters, 101 (2012), 1.   Google Scholar

[19]

N. J. Pilgrim, W. Batty and R. W. Kelsall, Electrothermal Monte Carlo simulations of InGaAs/AlGaAs HEMTs,, Journal of Computational Electronics, 2 (2003), 207.  doi: 10.1023/B:JCEL.0000011426.11111.64.  Google Scholar

[20]

E. Pop, S. Sinha and K. E. Goodson, Heat generation and transport in nanometer-scale transistors,, Proceedings of the IEEE, 94 (2006), 1587.  doi: 10.1109/JPROC.2006.879794.  Google Scholar

[21]

G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23 (2011).  doi: 10.1063/1.3558887.  Google Scholar

[22]

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling thermal effects in nanodevices,, IEEE Transactions on Electron Devices, 55 (2008), 1306.  doi: 10.1109/TED.2008.921263.  Google Scholar

[23]

S. Rjasanow and W. Wagner, Stochastic Numerics for the Boltzmann Equation,, Springer Series in Computational Mathematics, (2005).   Google Scholar

[24]

W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14 (2008), 191.  doi: 10.1515/MCMA.2008.010.  Google Scholar

show all references

References:
[1]

L. L. Baker and N. G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann equation,, Phys. Fluids, 17 (2005).  doi: 10.1063/1.1899210.  Google Scholar

[2]

M. H. A. Davis, Markov Models and Optimization,, Monographs on Statistics and Applied Probability, (1993).   Google Scholar

[3]

A. Eibeck and W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations,, Ann. Appl. Probab., 13 (2003), 845.  doi: 10.1214/aoap/1060202829.  Google Scholar

[4]

M. V. Fischetti, S. E. Laux, P. M. Solomon and A. Kumar, Thirty years of Monte Carlo simulations of electronic transport in semiconductors: Their relevance to science and mainstream VLSI technology,, Journal of Computational Electronics, 3 (2004), 287.   Google Scholar

[5]

T. M. M. Homolle and N. G. Hadjiconstantinou, Low-variance deviational simulation Monte Carlo,, Phys. Fluids, 19 (2007), 1.   Google Scholar

[6]

C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation,, Springer, (1989).  doi: 10.1007/978-3-7091-6963-6.  Google Scholar

[7]

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,, Rev. Modern Phys., 55 (1983), 645.  doi: 10.1103/RevModPhys.55.645.  Google Scholar

[8]

A. Jüngel, Transport Equations for Semiconductors,, vol. 773 of Lecture Notes in Physics, (2009).  doi: 10.1007/978-3-540-89526-8.  Google Scholar

[9]

A. Majorana, Trend to equilibrium of electron gas in a semiconductor according to the Boltzmann equation,, Transport Theory Statist. Phys., 27 (1998), 547.  doi: 10.1080/00411459808205642.  Google Scholar

[10]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer-Verlag, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[11]

O. Muscato and V. Di Stefano, An energy transport model describing heat generation and conduction in silicon semiconductors,, J. Stat. Phys., 144 (2011), 171.  doi: 10.1007/s10955-011-0247-2.  Google Scholar

[12]

O. Muscato and V. Di Stefano, Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations,, COMPEL, 30 (2011), 519.  doi: 10.1108/03321641111101050.  Google Scholar

[13]

O. Muscato, V. Di Stefano and W. Wagner, A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation,, Comput. Math. Appl., 65 (2013), 520.  doi: 10.1016/j.camwa.2012.03.100.  Google Scholar

[14]

O. Muscato, W. Wagner and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors,, M2AN Math. Model. Numer. Anal., 44 (2010), 1049.  doi: 10.1051/m2an/2010051.  Google Scholar

[15]

O. Muscato, W. Wagner and V. Di Stefano, Properties of the steady state distribution of electrons in semiconductors,, Kinetic and Related Models, 4 (2011), 808.  doi: 10.3934/krm.2011.4.809.  Google Scholar

[16]

C. Ni, Z. Aksamija, J. Y. Murthy and U. Ravaioli, Coupled electro-thermal simulation of MOSFETs,, Journal of Computational Electronics, 11 (2012), 93.   Google Scholar

[17]

J.-P. M. Péraud and N. G. Hadjiconstantinou, Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations,, Phys. Rev. B, 84 (2011), 1.   Google Scholar

[18]

J.-P. M. Péraud and N. G. Hadjiconstantinou, An alternative approach to efficient simulation of micro/nanoscale phonon transport,, Applied Physics Letters, 101 (2012), 1.   Google Scholar

[19]

N. J. Pilgrim, W. Batty and R. W. Kelsall, Electrothermal Monte Carlo simulations of InGaAs/AlGaAs HEMTs,, Journal of Computational Electronics, 2 (2003), 207.  doi: 10.1023/B:JCEL.0000011426.11111.64.  Google Scholar

[20]

E. Pop, S. Sinha and K. E. Goodson, Heat generation and transport in nanometer-scale transistors,, Proceedings of the IEEE, 94 (2006), 1587.  doi: 10.1109/JPROC.2006.879794.  Google Scholar

[21]

G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23 (2011).  doi: 10.1063/1.3558887.  Google Scholar

[22]

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling thermal effects in nanodevices,, IEEE Transactions on Electron Devices, 55 (2008), 1306.  doi: 10.1109/TED.2008.921263.  Google Scholar

[23]

S. Rjasanow and W. Wagner, Stochastic Numerics for the Boltzmann Equation,, Springer Series in Computational Mathematics, (2005).   Google Scholar

[24]

W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14 (2008), 191.  doi: 10.1515/MCMA.2008.010.  Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[3]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]