December  2013, 6(4): 969-987. doi: 10.3934/krm.2013.6.969

Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension

1. 

Muroran Institute of Technology, Muroran 050-8585, Japan

2. 

School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011

3. 

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395

Received  July 2013 Revised  September 2013 Published  November 2013

We study the initial value problem for the generalized cubic double dispersion equation in one space dimension. We establish a nonlinear approximation result to our global solutions that was obtained in [6]. Moreover, we show that as time tends to infinity, the solution approaches the superposition of nonlinear diffusion waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. The proof is based on the semigroup argument combined with the analysis of wave decomposition.
Citation: Masakazu Kato, Yu-Zhu Wang, Shuichi Kawashima. Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension. Kinetic & Related Models, 2013, 6 (4) : 969-987. doi: 10.3934/krm.2013.6.969
References:
[1]

G. Chen, Y. Wang and S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation,, J. Math. Anal. Appl., 299 (2004), 563.  doi: 10.1016/j.jmaa.2004.05.044.  Google Scholar

[2]

M. Kato, Large time behavior of solutions to the generalized Burgers equations,, Osaka J. Math., 44 (2007), 923.   Google Scholar

[3]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[4]

S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation,, Comm. Math. Phys., 109 (1987), 563.  doi: 10.1007/BF01208958.  Google Scholar

[5]

S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and application to radiation hydrodynamics,, Analysis of Systems of Conservation Laws, (1999), 87.   Google Scholar

[6]

S. Kawashima and Y.-Z. Wang, Global Existence and Asymptotic Behavior of Solutions to the Generalized Cubic Double Dispersion Equation,, Analysis and Applications (accepted)., ().   Google Scholar

[7]

T. T. Li and Y. M. Chen, Nonlinear Evolution Equations,, Academic Press, (1989).   Google Scholar

[8]

T.-P. Liu, Hyperbolic and Viscous Conservation Laws,, CBMS-NSF Regional Conference Sereies in Applied Math., (2000).  doi: 10.1137/1.9780898719420.  Google Scholar

[9]

T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Memoirs Amer. Math. Soc., 125 (1997).  doi: 10.1090/memo/0599.  Google Scholar

[10]

Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation,, Discrete Contin. Dyn. Syst., 29 (2011), 1113.  doi: 10.3934/dcds.2011.29.1113.  Google Scholar

[11]

Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 8 (2011), 591.  doi: 10.1142/S0219891611002500.  Google Scholar

[12]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,, Kinetic and Related Models, 4 (2011), 531.  doi: 10.3934/krm.2011.4.531.  Google Scholar

[13]

A. Matsumura, On the asymptotic behaviour of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (1976), 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[14]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, Math. Z., 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[15]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their applications,, Math. Z., 244 (2003), 631.  doi: 10.1007/s00209-003-0516-0.  Google Scholar

[16]

N. Polat and A. Ertaş, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation,, J. Math. Anal. Appl., 349 (2009), 10.  doi: 10.1016/j.jmaa.2008.08.025.  Google Scholar

[17]

A. M. Samsonov, Nonlinear strain waves in elastic waveguides,, in Nonlinear Waves in Solids(Udine, 341 (1994), 349.   Google Scholar

[18]

A. M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic waveguides and external media,, in Nonlinear Waves in Active Media, (1989), 99.   Google Scholar

[19]

Y. Sugitani and S. Kawashima, Decay estimates of solution to a semi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 7 (2010), 471.  doi: 10.1142/S0219891610002207.  Google Scholar

[20]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect,, J. Math. Anal. Appl., 401 (2013), 244.  doi: 10.1016/j.jmaa.2012.12.015.  Google Scholar

[21]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profles,, J. Differential Equations, 253 (2012), 3061.  doi: 10.1016/j.jde.2012.07.014.  Google Scholar

[22]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[23]

Y. Ueda and S. Kawashima, Large time behavior of solutions to a semilinear hyperbolic system with relaxation,, J. Hyperbolic Differential Equations, 4 (2007), 147.  doi: 10.1142/S0219891607001082.  Google Scholar

[24]

S. Wang and G. Chen, Cauchy problem of the generalized double dispersion equation,, Nonlinear Anal., 64 (2006), 159.  doi: 10.1016/j.na.2005.06.017.  Google Scholar

[25]

S. Wang and F. Da, On the asymptotic behavior of solution for the generalized double dipersion equation,, Appl. Anal., 92 (2013), 1179.  doi: 10.1080/00036811.2012.661044.  Google Scholar

[26]

S. Wang and H. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term,, J. Diff. Equations, 252 (2012), 4243.  doi: 10.1016/j.jde.2011.12.016.  Google Scholar

[27]

Y.-Z. Wang, Global existence and asymptotic behaviour of solutions for the generalized Boussinesq equation,, Nonlinear Anal., 70 (2009), 465.  doi: 10.1016/j.na.2007.12.018.  Google Scholar

[28]

Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation,, J. Math. Anal. Appl., 385 (2012), 836.  doi: 10.1016/j.jmaa.2011.07.010.  Google Scholar

[29]

Y.-Z. Wang and Y.-X. Wang, Global existence and asymptotic behavior of solutions to a nonlinear wave equation of fourth-order,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.3677764.  Google Scholar

[30]

R. Xu, Y. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations,, Nonlinear Anal., 71 (2009), 4977.  doi: 10.1016/j.na.2009.03.069.  Google Scholar

[31]

S. M. Zheng, Nonlinear Evolution Equations,, Monographs and Surveys in Pure and Applied Mathematics, (2004).  doi: 10.1201/9780203492222.  Google Scholar

show all references

References:
[1]

G. Chen, Y. Wang and S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation,, J. Math. Anal. Appl., 299 (2004), 563.  doi: 10.1016/j.jmaa.2004.05.044.  Google Scholar

[2]

M. Kato, Large time behavior of solutions to the generalized Burgers equations,, Osaka J. Math., 44 (2007), 923.   Google Scholar

[3]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[4]

S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation,, Comm. Math. Phys., 109 (1987), 563.  doi: 10.1007/BF01208958.  Google Scholar

[5]

S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and application to radiation hydrodynamics,, Analysis of Systems of Conservation Laws, (1999), 87.   Google Scholar

[6]

S. Kawashima and Y.-Z. Wang, Global Existence and Asymptotic Behavior of Solutions to the Generalized Cubic Double Dispersion Equation,, Analysis and Applications (accepted)., ().   Google Scholar

[7]

T. T. Li and Y. M. Chen, Nonlinear Evolution Equations,, Academic Press, (1989).   Google Scholar

[8]

T.-P. Liu, Hyperbolic and Viscous Conservation Laws,, CBMS-NSF Regional Conference Sereies in Applied Math., (2000).  doi: 10.1137/1.9780898719420.  Google Scholar

[9]

T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Memoirs Amer. Math. Soc., 125 (1997).  doi: 10.1090/memo/0599.  Google Scholar

[10]

Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation,, Discrete Contin. Dyn. Syst., 29 (2011), 1113.  doi: 10.3934/dcds.2011.29.1113.  Google Scholar

[11]

Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 8 (2011), 591.  doi: 10.1142/S0219891611002500.  Google Scholar

[12]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,, Kinetic and Related Models, 4 (2011), 531.  doi: 10.3934/krm.2011.4.531.  Google Scholar

[13]

A. Matsumura, On the asymptotic behaviour of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (1976), 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[14]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, Math. Z., 214 (1993), 325.  doi: 10.1007/BF02572407.  Google Scholar

[15]

K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their applications,, Math. Z., 244 (2003), 631.  doi: 10.1007/s00209-003-0516-0.  Google Scholar

[16]

N. Polat and A. Ertaş, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation,, J. Math. Anal. Appl., 349 (2009), 10.  doi: 10.1016/j.jmaa.2008.08.025.  Google Scholar

[17]

A. M. Samsonov, Nonlinear strain waves in elastic waveguides,, in Nonlinear Waves in Solids(Udine, 341 (1994), 349.   Google Scholar

[18]

A. M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic waveguides and external media,, in Nonlinear Waves in Active Media, (1989), 99.   Google Scholar

[19]

Y. Sugitani and S. Kawashima, Decay estimates of solution to a semi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 7 (2010), 471.  doi: 10.1142/S0219891610002207.  Google Scholar

[20]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect,, J. Math. Anal. Appl., 401 (2013), 244.  doi: 10.1016/j.jmaa.2012.12.015.  Google Scholar

[21]

H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profles,, J. Differential Equations, 253 (2012), 3061.  doi: 10.1016/j.jde.2012.07.014.  Google Scholar

[22]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[23]

Y. Ueda and S. Kawashima, Large time behavior of solutions to a semilinear hyperbolic system with relaxation,, J. Hyperbolic Differential Equations, 4 (2007), 147.  doi: 10.1142/S0219891607001082.  Google Scholar

[24]

S. Wang and G. Chen, Cauchy problem of the generalized double dispersion equation,, Nonlinear Anal., 64 (2006), 159.  doi: 10.1016/j.na.2005.06.017.  Google Scholar

[25]

S. Wang and F. Da, On the asymptotic behavior of solution for the generalized double dipersion equation,, Appl. Anal., 92 (2013), 1179.  doi: 10.1080/00036811.2012.661044.  Google Scholar

[26]

S. Wang and H. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term,, J. Diff. Equations, 252 (2012), 4243.  doi: 10.1016/j.jde.2011.12.016.  Google Scholar

[27]

Y.-Z. Wang, Global existence and asymptotic behaviour of solutions for the generalized Boussinesq equation,, Nonlinear Anal., 70 (2009), 465.  doi: 10.1016/j.na.2007.12.018.  Google Scholar

[28]

Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation,, J. Math. Anal. Appl., 385 (2012), 836.  doi: 10.1016/j.jmaa.2011.07.010.  Google Scholar

[29]

Y.-Z. Wang and Y.-X. Wang, Global existence and asymptotic behavior of solutions to a nonlinear wave equation of fourth-order,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.3677764.  Google Scholar

[30]

R. Xu, Y. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations,, Nonlinear Anal., 71 (2009), 4977.  doi: 10.1016/j.na.2009.03.069.  Google Scholar

[31]

S. M. Zheng, Nonlinear Evolution Equations,, Monographs and Surveys in Pure and Applied Mathematics, (2004).  doi: 10.1201/9780203492222.  Google Scholar

[1]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[2]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[9]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[10]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[11]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[14]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[19]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[20]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]