-
Previous Article
Remarks on the full dispersion Kadomtsev-Petviashvli equation
- KRM Home
- This Issue
-
Next Article
Some properties of the kinetic equation for electron transport in semiconductors
Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension
1. | Muroran Institute of Technology, Muroran 050-8585, Japan |
2. | School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011 |
3. | Faculty of Mathematics, Kyushu University, Fukuoka 819-0395 |
References:
[1] |
G. Chen, Y. Wang and S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation,, J. Math. Anal. Appl., 299 (2004), 563.
doi: 10.1016/j.jmaa.2004.05.044. |
[2] |
M. Kato, Large time behavior of solutions to the generalized Burgers equations,, Osaka J. Math., 44 (2007), 923.
|
[3] |
S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh, 106 (1987), 169.
doi: 10.1017/S0308210500018308. |
[4] |
S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation,, Comm. Math. Phys., 109 (1987), 563.
doi: 10.1007/BF01208958. |
[5] |
S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and application to radiation hydrodynamics,, Analysis of Systems of Conservation Laws, (1999), 87.
|
[6] |
S. Kawashima and Y.-Z. Wang, Global Existence and Asymptotic Behavior of Solutions to the Generalized Cubic Double Dispersion Equation,, Analysis and Applications (accepted)., (). Google Scholar |
[7] |
T. T. Li and Y. M. Chen, Nonlinear Evolution Equations,, Academic Press, (1989).
|
[8] |
T.-P. Liu, Hyperbolic and Viscous Conservation Laws,, CBMS-NSF Regional Conference Sereies in Applied Math., (2000).
doi: 10.1137/1.9780898719420. |
[9] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Memoirs Amer. Math. Soc., 125 (1997).
doi: 10.1090/memo/0599. |
[10] |
Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation,, Discrete Contin. Dyn. Syst., 29 (2011), 1113.
doi: 10.3934/dcds.2011.29.1113. |
[11] |
Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 8 (2011), 591.
doi: 10.1142/S0219891611002500. |
[12] |
Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,, Kinetic and Related Models, 4 (2011), 531.
doi: 10.3934/krm.2011.4.531. |
[13] |
A. Matsumura, On the asymptotic behaviour of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (1976), 169.
doi: 10.2977/prims/1195190962. |
[14] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, Math. Z., 214 (1993), 325.
doi: 10.1007/BF02572407. |
[15] |
K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their applications,, Math. Z., 244 (2003), 631.
doi: 10.1007/s00209-003-0516-0. |
[16] |
N. Polat and A. Ertaş, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation,, J. Math. Anal. Appl., 349 (2009), 10.
doi: 10.1016/j.jmaa.2008.08.025. |
[17] |
A. M. Samsonov, Nonlinear strain waves in elastic waveguides,, in Nonlinear Waves in Solids(Udine, 341 (1994), 349.
|
[18] |
A. M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic waveguides and external media,, in Nonlinear Waves in Active Media, (1989), 99.
|
[19] |
Y. Sugitani and S. Kawashima, Decay estimates of solution to a semi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 7 (2010), 471.
doi: 10.1142/S0219891610002207. |
[20] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect,, J. Math. Anal. Appl., 401 (2013), 244.
doi: 10.1016/j.jmaa.2012.12.015. |
[21] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profles,, J. Differential Equations, 253 (2012), 3061.
doi: 10.1016/j.jde.2012.07.014. |
[22] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.
doi: 10.1006/jdeq.2000.3933. |
[23] |
Y. Ueda and S. Kawashima, Large time behavior of solutions to a semilinear hyperbolic system with relaxation,, J. Hyperbolic Differential Equations, 4 (2007), 147.
doi: 10.1142/S0219891607001082. |
[24] |
S. Wang and G. Chen, Cauchy problem of the generalized double dispersion equation,, Nonlinear Anal., 64 (2006), 159.
doi: 10.1016/j.na.2005.06.017. |
[25] |
S. Wang and F. Da, On the asymptotic behavior of solution for the generalized double dipersion equation,, Appl. Anal., 92 (2013), 1179.
doi: 10.1080/00036811.2012.661044. |
[26] |
S. Wang and H. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term,, J. Diff. Equations, 252 (2012), 4243.
doi: 10.1016/j.jde.2011.12.016. |
[27] |
Y.-Z. Wang, Global existence and asymptotic behaviour of solutions for the generalized Boussinesq equation,, Nonlinear Anal., 70 (2009), 465.
doi: 10.1016/j.na.2007.12.018. |
[28] |
Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation,, J. Math. Anal. Appl., 385 (2012), 836.
doi: 10.1016/j.jmaa.2011.07.010. |
[29] |
Y.-Z. Wang and Y.-X. Wang, Global existence and asymptotic behavior of solutions to a nonlinear wave equation of fourth-order,, J. Math. Phys., 53 (2012).
doi: 10.1063/1.3677764. |
[30] |
R. Xu, Y. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations,, Nonlinear Anal., 71 (2009), 4977.
doi: 10.1016/j.na.2009.03.069. |
[31] |
S. M. Zheng, Nonlinear Evolution Equations,, Monographs and Surveys in Pure and Applied Mathematics, (2004).
doi: 10.1201/9780203492222. |
show all references
References:
[1] |
G. Chen, Y. Wang and S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation,, J. Math. Anal. Appl., 299 (2004), 563.
doi: 10.1016/j.jmaa.2004.05.044. |
[2] |
M. Kato, Large time behavior of solutions to the generalized Burgers equations,, Osaka J. Math., 44 (2007), 923.
|
[3] |
S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh, 106 (1987), 169.
doi: 10.1017/S0308210500018308. |
[4] |
S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation,, Comm. Math. Phys., 109 (1987), 563.
doi: 10.1007/BF01208958. |
[5] |
S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and application to radiation hydrodynamics,, Analysis of Systems of Conservation Laws, (1999), 87.
|
[6] |
S. Kawashima and Y.-Z. Wang, Global Existence and Asymptotic Behavior of Solutions to the Generalized Cubic Double Dispersion Equation,, Analysis and Applications (accepted)., (). Google Scholar |
[7] |
T. T. Li and Y. M. Chen, Nonlinear Evolution Equations,, Academic Press, (1989).
|
[8] |
T.-P. Liu, Hyperbolic and Viscous Conservation Laws,, CBMS-NSF Regional Conference Sereies in Applied Math., (2000).
doi: 10.1137/1.9780898719420. |
[9] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Memoirs Amer. Math. Soc., 125 (1997).
doi: 10.1090/memo/0599. |
[10] |
Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation,, Discrete Contin. Dyn. Syst., 29 (2011), 1113.
doi: 10.3934/dcds.2011.29.1113. |
[11] |
Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 8 (2011), 591.
doi: 10.1142/S0219891611002500. |
[12] |
Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,, Kinetic and Related Models, 4 (2011), 531.
doi: 10.3934/krm.2011.4.531. |
[13] |
A. Matsumura, On the asymptotic behaviour of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (1976), 169.
doi: 10.2977/prims/1195190962. |
[14] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations,, Math. Z., 214 (1993), 325.
doi: 10.1007/BF02572407. |
[15] |
K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their applications,, Math. Z., 244 (2003), 631.
doi: 10.1007/s00209-003-0516-0. |
[16] |
N. Polat and A. Ertaş, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation,, J. Math. Anal. Appl., 349 (2009), 10.
doi: 10.1016/j.jmaa.2008.08.025. |
[17] |
A. M. Samsonov, Nonlinear strain waves in elastic waveguides,, in Nonlinear Waves in Solids(Udine, 341 (1994), 349.
|
[18] |
A. M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic waveguides and external media,, in Nonlinear Waves in Active Media, (1989), 99.
|
[19] |
Y. Sugitani and S. Kawashima, Decay estimates of solution to a semi-linear dissipative plate equation,, J. Hyperbolic Differential Equations, 7 (2010), 471.
doi: 10.1142/S0219891610002207. |
[20] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect,, J. Math. Anal. Appl., 401 (2013), 244.
doi: 10.1016/j.jmaa.2012.12.015. |
[21] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profles,, J. Differential Equations, 253 (2012), 3061.
doi: 10.1016/j.jde.2012.07.014. |
[22] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.
doi: 10.1006/jdeq.2000.3933. |
[23] |
Y. Ueda and S. Kawashima, Large time behavior of solutions to a semilinear hyperbolic system with relaxation,, J. Hyperbolic Differential Equations, 4 (2007), 147.
doi: 10.1142/S0219891607001082. |
[24] |
S. Wang and G. Chen, Cauchy problem of the generalized double dispersion equation,, Nonlinear Anal., 64 (2006), 159.
doi: 10.1016/j.na.2005.06.017. |
[25] |
S. Wang and F. Da, On the asymptotic behavior of solution for the generalized double dipersion equation,, Appl. Anal., 92 (2013), 1179.
doi: 10.1080/00036811.2012.661044. |
[26] |
S. Wang and H. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term,, J. Diff. Equations, 252 (2012), 4243.
doi: 10.1016/j.jde.2011.12.016. |
[27] |
Y.-Z. Wang, Global existence and asymptotic behaviour of solutions for the generalized Boussinesq equation,, Nonlinear Anal., 70 (2009), 465.
doi: 10.1016/j.na.2007.12.018. |
[28] |
Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation,, J. Math. Anal. Appl., 385 (2012), 836.
doi: 10.1016/j.jmaa.2011.07.010. |
[29] |
Y.-Z. Wang and Y.-X. Wang, Global existence and asymptotic behavior of solutions to a nonlinear wave equation of fourth-order,, J. Math. Phys., 53 (2012).
doi: 10.1063/1.3677764. |
[30] |
R. Xu, Y. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations,, Nonlinear Anal., 71 (2009), 4977.
doi: 10.1016/j.na.2009.03.069. |
[31] |
S. M. Zheng, Nonlinear Evolution Equations,, Monographs and Surveys in Pure and Applied Mathematics, (2004).
doi: 10.1201/9780203492222. |
[1] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[2] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[3] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[4] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[5] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[6] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[7] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[8] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[9] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[10] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[11] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[12] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[13] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[14] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[15] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[16] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[17] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[18] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[19] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[20] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]