December  2013, 6(4): 989-1009. doi: 10.3934/krm.2013.6.989

Remarks on the full dispersion Kadomtsev-Petviashvli equation

1. 

DMA, Ecole Normale Supérieure et CNRS UMR 8553, 45 rue d'Ulm, 75005 Paris

2. 

Laboratoire de Mathématiques, UMR 8628, Université Paris-Sud et CNRS, 91405 Orsay, France

Received  September 2013 Revised  September 2013 Published  November 2013

We consider in this paper the Full Dispersion Kadomtsev-Petviashvili Equation (FDKP) introduced in [19] in order to overcome some shortcomings of the classical KP equation. We investigate its mathematical properties, emphasizing the differences with the Kadomtsev-Petviashvili equation and their relevance to the approximation of water waves. We also present some numerical simulations.
Citation: David Lannes, Jean-Claude Saut. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinetic & Related Models, 2013, 6 (4) : 989-1009. doi: 10.3934/krm.2013.6.989
References:
[1]

J. Albert, J. L. Bona and J.-C.Saut, Model equations for waves in stratified fluids,, Proc. Royal Soc. London A, 453 (1997), 1233. doi: 10.1098/rspa.1997.0068. Google Scholar

[2]

D. Alterman and J. Rauch, The linear diffractive pulse equation,, Cathleen Morawetz: A great mathematician, 7 (2000), 263. Google Scholar

[3]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3d water-waves and asymptotics,, Invent. math., 171 (2008), 485. doi: 10.1007/s00222-007-0088-4. Google Scholar

[4]

W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems,, Comm. Partial Differential Equations, 27 (2002), 979. doi: 10.1081/PDE-120004892. Google Scholar

[5]

J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves,, Arch. Ration. Mech. Anal., 178 (2005), 373. doi: 10.1007/s00205-005-0378-1. Google Scholar

[6]

A. de Bouard and J.-C. Saut, Solitary waves of generalized KP equations,, Annales IHP Analyse non Linéaire, 14 (1997), 211. doi: 10.1016/S0294-1449(97)80145-X. Google Scholar

[7]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation,, Geom. Funct. Anal., 3 (1993), 315. doi: 10.1007/BF01896259. Google Scholar

[8]

A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model,, Nonlinearity, 23 (2010), 2835. doi: 10.1088/0951-7715/23/11/006. Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[10]

T. Colin and D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics,, Duke Math. J., 107 (2001), 351. doi: 10.1215/S0012-7094-01-10725-4. Google Scholar

[11]

M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation,, Diff. Int. Equations, 22 (2009), 1193. Google Scholar

[12]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type,, Nonlinearity, 25 (2012), 2903. doi: 10.1088/0951-7715/25/10/2903. Google Scholar

[13]

R. L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of $(-\Delta)^s Q+Q-Q^{\alpha +1}=0$ in $\mathbbR$,, , (2010). Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations,, J. Funct. Analysis, 254 (2008), 1642. doi: 10.1016/j.jfa.2007.12.010. Google Scholar

[15]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,, Sov. Phys. Dokl., 15 (1970), 539. Google Scholar

[16]

C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations,, J. Nonlinear Science, 22 (2012), 763. doi: 10.1007/s00332-012-9127-4. Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of the Burgers equation,, in preparation., (). Google Scholar

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation,, J. Nonl. Sci., 17 (2007), 429. doi: 10.1007/s00332-007-9001-y. Google Scholar

[19]

D. Lannes, The Water Waves Problem: Mathematical Theory and Asymptotics,, Mathematical Surveys and Monographs, (2013). Google Scholar

[20]

D. Lannes, Consistency of the KP approximation, Dynamical systems and differential equations (Wilmington, NC, 2002)., Discrete Cont. Dyn. Syst., (2003), 517. Google Scholar

[21]

D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation,, Nonlinearity, 19 (2006), 2853. doi: 10.1088/0951-7715/19/12/007. Google Scholar

[22]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory,, , (2013). Google Scholar

[23]

S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,, Phys. Lett. A, 63 (1977), 205. doi: 10.1016/0375-9601(77)90875-1. Google Scholar

[24]

M. Ming, P. Zhang and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves,, SIAM J. Math. Anal., 44 (2012), 2920. doi: 10.1137/11084220X. Google Scholar

[25]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations,, J. Diff. Eq., 152 (1999), 30. doi: 10.1006/jdeq.1998.3522. Google Scholar

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations,, SIAM J. Math. Anal., 39 (2007), 627. doi: 10.1137/060654256. Google Scholar

[27]

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves,, Translated from the Russian manuscript by Boris Gommerstadt. Translations of Mathematical Monographs, (1994). Google Scholar

[28]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations,, Indiana Univ. Math. J., 42 (1993), 1011. doi: 10.1512/iumj.1993.42.42047. Google Scholar

[29]

H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation,, IMRN, 8 (2001), 77. doi: 10.1155/S1073792801000058. Google Scholar

[30]

S. Ukaï, Local solutions of the Kadomtsev-Petviashvili equation,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 193. Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Commun. Partial Diff. Equ, 12 (1987), 1133. doi: 10.1080/03605308708820522. Google Scholar

[32]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567. Google Scholar

[33]

G. B. Whitham, Variational methods and applications to water waves,, Proc. R. Soc. Lond. A, 299 (1967), 6. Google Scholar

[34]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], (1974). Google Scholar

show all references

References:
[1]

J. Albert, J. L. Bona and J.-C.Saut, Model equations for waves in stratified fluids,, Proc. Royal Soc. London A, 453 (1997), 1233. doi: 10.1098/rspa.1997.0068. Google Scholar

[2]

D. Alterman and J. Rauch, The linear diffractive pulse equation,, Cathleen Morawetz: A great mathematician, 7 (2000), 263. Google Scholar

[3]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3d water-waves and asymptotics,, Invent. math., 171 (2008), 485. doi: 10.1007/s00222-007-0088-4. Google Scholar

[4]

W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems,, Comm. Partial Differential Equations, 27 (2002), 979. doi: 10.1081/PDE-120004892. Google Scholar

[5]

J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves,, Arch. Ration. Mech. Anal., 178 (2005), 373. doi: 10.1007/s00205-005-0378-1. Google Scholar

[6]

A. de Bouard and J.-C. Saut, Solitary waves of generalized KP equations,, Annales IHP Analyse non Linéaire, 14 (1997), 211. doi: 10.1016/S0294-1449(97)80145-X. Google Scholar

[7]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation,, Geom. Funct. Anal., 3 (1993), 315. doi: 10.1007/BF01896259. Google Scholar

[8]

A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model,, Nonlinearity, 23 (2010), 2835. doi: 10.1088/0951-7715/23/11/006. Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[10]

T. Colin and D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics,, Duke Math. J., 107 (2001), 351. doi: 10.1215/S0012-7094-01-10725-4. Google Scholar

[11]

M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation,, Diff. Int. Equations, 22 (2009), 1193. Google Scholar

[12]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type,, Nonlinearity, 25 (2012), 2903. doi: 10.1088/0951-7715/25/10/2903. Google Scholar

[13]

R. L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of $(-\Delta)^s Q+Q-Q^{\alpha +1}=0$ in $\mathbbR$,, , (2010). Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations,, J. Funct. Analysis, 254 (2008), 1642. doi: 10.1016/j.jfa.2007.12.010. Google Scholar

[15]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,, Sov. Phys. Dokl., 15 (1970), 539. Google Scholar

[16]

C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations,, J. Nonlinear Science, 22 (2012), 763. doi: 10.1007/s00332-012-9127-4. Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of the Burgers equation,, in preparation., (). Google Scholar

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation,, J. Nonl. Sci., 17 (2007), 429. doi: 10.1007/s00332-007-9001-y. Google Scholar

[19]

D. Lannes, The Water Waves Problem: Mathematical Theory and Asymptotics,, Mathematical Surveys and Monographs, (2013). Google Scholar

[20]

D. Lannes, Consistency of the KP approximation, Dynamical systems and differential equations (Wilmington, NC, 2002)., Discrete Cont. Dyn. Syst., (2003), 517. Google Scholar

[21]

D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation,, Nonlinearity, 19 (2006), 2853. doi: 10.1088/0951-7715/19/12/007. Google Scholar

[22]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory,, , (2013). Google Scholar

[23]

S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,, Phys. Lett. A, 63 (1977), 205. doi: 10.1016/0375-9601(77)90875-1. Google Scholar

[24]

M. Ming, P. Zhang and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves,, SIAM J. Math. Anal., 44 (2012), 2920. doi: 10.1137/11084220X. Google Scholar

[25]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations,, J. Diff. Eq., 152 (1999), 30. doi: 10.1006/jdeq.1998.3522. Google Scholar

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations,, SIAM J. Math. Anal., 39 (2007), 627. doi: 10.1137/060654256. Google Scholar

[27]

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves,, Translated from the Russian manuscript by Boris Gommerstadt. Translations of Mathematical Monographs, (1994). Google Scholar

[28]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations,, Indiana Univ. Math. J., 42 (1993), 1011. doi: 10.1512/iumj.1993.42.42047. Google Scholar

[29]

H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation,, IMRN, 8 (2001), 77. doi: 10.1155/S1073792801000058. Google Scholar

[30]

S. Ukaï, Local solutions of the Kadomtsev-Petviashvili equation,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 193. Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Commun. Partial Diff. Equ, 12 (1987), 1133. doi: 10.1080/03605308708820522. Google Scholar

[32]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567. Google Scholar

[33]

G. B. Whitham, Variational methods and applications to water waves,, Proc. R. Soc. Lond. A, 299 (1967), 6. Google Scholar

[34]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], (1974). Google Scholar

[1]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[2]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[3]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[4]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[5]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[6]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[7]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[8]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[9]

Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155

[10]

Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547

[11]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[12]

Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068

[13]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[14]

Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177

[15]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[16]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[17]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[18]

Yu-Zhu Wang, Si Chen, Menglong Su. Asymptotic profile of solutions to the linearized double dispersion equation on the half space $\mathbb{R}^{n}_{+}$. Evolution Equations & Control Theory, 2017, 6 (4) : 629-645. doi: 10.3934/eect.2017032

[19]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[20]

Masakazu Kato, Yu-Zhu Wang, Shuichi Kawashima. Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension. Kinetic & Related Models, 2013, 6 (4) : 969-987. doi: 10.3934/krm.2013.6.969

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]