December  2013, 6(4): 989-1009. doi: 10.3934/krm.2013.6.989

Remarks on the full dispersion Kadomtsev-Petviashvli equation

1. 

DMA, Ecole Normale Supérieure et CNRS UMR 8553, 45 rue d'Ulm, 75005 Paris

2. 

Laboratoire de Mathématiques, UMR 8628, Université Paris-Sud et CNRS, 91405 Orsay, France

Received  September 2013 Revised  September 2013 Published  November 2013

We consider in this paper the Full Dispersion Kadomtsev-Petviashvili Equation (FDKP) introduced in [19] in order to overcome some shortcomings of the classical KP equation. We investigate its mathematical properties, emphasizing the differences with the Kadomtsev-Petviashvili equation and their relevance to the approximation of water waves. We also present some numerical simulations.
Citation: David Lannes, Jean-Claude Saut. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinetic & Related Models, 2013, 6 (4) : 989-1009. doi: 10.3934/krm.2013.6.989
References:
[1]

J. Albert, J. L. Bona and J.-C.Saut, Model equations for waves in stratified fluids,, Proc. Royal Soc. London A, 453 (1997), 1233.  doi: 10.1098/rspa.1997.0068.  Google Scholar

[2]

D. Alterman and J. Rauch, The linear diffractive pulse equation,, Cathleen Morawetz: A great mathematician, 7 (2000), 263.   Google Scholar

[3]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3d water-waves and asymptotics,, Invent. math., 171 (2008), 485.  doi: 10.1007/s00222-007-0088-4.  Google Scholar

[4]

W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems,, Comm. Partial Differential Equations, 27 (2002), 979.  doi: 10.1081/PDE-120004892.  Google Scholar

[5]

J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves,, Arch. Ration. Mech. Anal., 178 (2005), 373.  doi: 10.1007/s00205-005-0378-1.  Google Scholar

[6]

A. de Bouard and J.-C. Saut, Solitary waves of generalized KP equations,, Annales IHP Analyse non Linéaire, 14 (1997), 211.  doi: 10.1016/S0294-1449(97)80145-X.  Google Scholar

[7]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation,, Geom. Funct. Anal., 3 (1993), 315.  doi: 10.1007/BF01896259.  Google Scholar

[8]

A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model,, Nonlinearity, 23 (2010), 2835.  doi: 10.1088/0951-7715/23/11/006.  Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[10]

T. Colin and D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics,, Duke Math. J., 107 (2001), 351.  doi: 10.1215/S0012-7094-01-10725-4.  Google Scholar

[11]

M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation,, Diff. Int. Equations, 22 (2009), 1193.   Google Scholar

[12]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type,, Nonlinearity, 25 (2012), 2903.  doi: 10.1088/0951-7715/25/10/2903.  Google Scholar

[13]

R. L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of $(-\Delta)^s Q+Q-Q^{\alpha +1}=0$ in $\mathbbR$,, , (2010).   Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations,, J. Funct. Analysis, 254 (2008), 1642.  doi: 10.1016/j.jfa.2007.12.010.  Google Scholar

[15]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,, Sov. Phys. Dokl., 15 (1970), 539.   Google Scholar

[16]

C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations,, J. Nonlinear Science, 22 (2012), 763.  doi: 10.1007/s00332-012-9127-4.  Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of the Burgers equation,, in preparation., ().   Google Scholar

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation,, J. Nonl. Sci., 17 (2007), 429.  doi: 10.1007/s00332-007-9001-y.  Google Scholar

[19]

D. Lannes, The Water Waves Problem: Mathematical Theory and Asymptotics,, Mathematical Surveys and Monographs, (2013).   Google Scholar

[20]

D. Lannes, Consistency of the KP approximation, Dynamical systems and differential equations (Wilmington, NC, 2002)., Discrete Cont. Dyn. Syst., (2003), 517.   Google Scholar

[21]

D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation,, Nonlinearity, 19 (2006), 2853.  doi: 10.1088/0951-7715/19/12/007.  Google Scholar

[22]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory,, , (2013).   Google Scholar

[23]

S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,, Phys. Lett. A, 63 (1977), 205.  doi: 10.1016/0375-9601(77)90875-1.  Google Scholar

[24]

M. Ming, P. Zhang and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves,, SIAM J. Math. Anal., 44 (2012), 2920.  doi: 10.1137/11084220X.  Google Scholar

[25]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations,, J. Diff. Eq., 152 (1999), 30.  doi: 10.1006/jdeq.1998.3522.  Google Scholar

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations,, SIAM J. Math. Anal., 39 (2007), 627.  doi: 10.1137/060654256.  Google Scholar

[27]

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves,, Translated from the Russian manuscript by Boris Gommerstadt. Translations of Mathematical Monographs, (1994).   Google Scholar

[28]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations,, Indiana Univ. Math. J., 42 (1993), 1011.  doi: 10.1512/iumj.1993.42.42047.  Google Scholar

[29]

H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation,, IMRN, 8 (2001), 77.  doi: 10.1155/S1073792801000058.  Google Scholar

[30]

S. Ukaï, Local solutions of the Kadomtsev-Petviashvili equation,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 193.   Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Commun. Partial Diff. Equ, 12 (1987), 1133.  doi: 10.1080/03605308708820522.  Google Scholar

[32]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567.   Google Scholar

[33]

G. B. Whitham, Variational methods and applications to water waves,, Proc. R. Soc. Lond. A, 299 (1967), 6.   Google Scholar

[34]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], (1974).   Google Scholar

show all references

References:
[1]

J. Albert, J. L. Bona and J.-C.Saut, Model equations for waves in stratified fluids,, Proc. Royal Soc. London A, 453 (1997), 1233.  doi: 10.1098/rspa.1997.0068.  Google Scholar

[2]

D. Alterman and J. Rauch, The linear diffractive pulse equation,, Cathleen Morawetz: A great mathematician, 7 (2000), 263.   Google Scholar

[3]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3d water-waves and asymptotics,, Invent. math., 171 (2008), 485.  doi: 10.1007/s00222-007-0088-4.  Google Scholar

[4]

W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems,, Comm. Partial Differential Equations, 27 (2002), 979.  doi: 10.1081/PDE-120004892.  Google Scholar

[5]

J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves,, Arch. Ration. Mech. Anal., 178 (2005), 373.  doi: 10.1007/s00205-005-0378-1.  Google Scholar

[6]

A. de Bouard and J.-C. Saut, Solitary waves of generalized KP equations,, Annales IHP Analyse non Linéaire, 14 (1997), 211.  doi: 10.1016/S0294-1449(97)80145-X.  Google Scholar

[7]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation,, Geom. Funct. Anal., 3 (1993), 315.  doi: 10.1007/BF01896259.  Google Scholar

[8]

A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model,, Nonlinearity, 23 (2010), 2835.  doi: 10.1088/0951-7715/23/11/006.  Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[10]

T. Colin and D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics,, Duke Math. J., 107 (2001), 351.  doi: 10.1215/S0012-7094-01-10725-4.  Google Scholar

[11]

M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation,, Diff. Int. Equations, 22 (2009), 1193.   Google Scholar

[12]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type,, Nonlinearity, 25 (2012), 2903.  doi: 10.1088/0951-7715/25/10/2903.  Google Scholar

[13]

R. L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of $(-\Delta)^s Q+Q-Q^{\alpha +1}=0$ in $\mathbbR$,, , (2010).   Google Scholar

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations,, J. Funct. Analysis, 254 (2008), 1642.  doi: 10.1016/j.jfa.2007.12.010.  Google Scholar

[15]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,, Sov. Phys. Dokl., 15 (1970), 539.   Google Scholar

[16]

C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations,, J. Nonlinear Science, 22 (2012), 763.  doi: 10.1007/s00332-012-9127-4.  Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of the Burgers equation,, in preparation., ().   Google Scholar

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation,, J. Nonl. Sci., 17 (2007), 429.  doi: 10.1007/s00332-007-9001-y.  Google Scholar

[19]

D. Lannes, The Water Waves Problem: Mathematical Theory and Asymptotics,, Mathematical Surveys and Monographs, (2013).   Google Scholar

[20]

D. Lannes, Consistency of the KP approximation, Dynamical systems and differential equations (Wilmington, NC, 2002)., Discrete Cont. Dyn. Syst., (2003), 517.   Google Scholar

[21]

D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation,, Nonlinearity, 19 (2006), 2853.  doi: 10.1088/0951-7715/19/12/007.  Google Scholar

[22]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory,, , (2013).   Google Scholar

[23]

S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction,, Phys. Lett. A, 63 (1977), 205.  doi: 10.1016/0375-9601(77)90875-1.  Google Scholar

[24]

M. Ming, P. Zhang and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves,, SIAM J. Math. Anal., 44 (2012), 2920.  doi: 10.1137/11084220X.  Google Scholar

[25]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations,, J. Diff. Eq., 152 (1999), 30.  doi: 10.1006/jdeq.1998.3522.  Google Scholar

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations,, SIAM J. Math. Anal., 39 (2007), 627.  doi: 10.1137/060654256.  Google Scholar

[27]

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves,, Translated from the Russian manuscript by Boris Gommerstadt. Translations of Mathematical Monographs, (1994).   Google Scholar

[28]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations,, Indiana Univ. Math. J., 42 (1993), 1011.  doi: 10.1512/iumj.1993.42.42047.  Google Scholar

[29]

H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation,, IMRN, 8 (2001), 77.  doi: 10.1155/S1073792801000058.  Google Scholar

[30]

S. Ukaï, Local solutions of the Kadomtsev-Petviashvili equation,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 193.   Google Scholar

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Commun. Partial Diff. Equ, 12 (1987), 1133.  doi: 10.1080/03605308708820522.  Google Scholar

[32]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567.   Google Scholar

[33]

G. B. Whitham, Variational methods and applications to water waves,, Proc. R. Soc. Lond. A, 299 (1967), 6.   Google Scholar

[34]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], (1974).   Google Scholar

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[3]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[4]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[5]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[6]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[7]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[8]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[9]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[14]

Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065

[15]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[19]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[20]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]