\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation

Abstract Related Papers Cited by
  • The Cauchy problem to the Fokker-Planck-Boltzmann equation under Grad's angular cut-off assumption is investigated. When the initial data is a small perturbation of an equilibrium state, global existence and optimal temporal decay estimates of classical solutions are established. Our analysis is based on the coercivity of the Fokker-Planck operator and an elementary weighted energy method.
    Mathematics Subject Classification: Primary: 35Q20; Secondary: 82C31, 76P05, 83C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.doi: 10.1081/PDE-100002246.

    [2]

    M. Bisi, J. A. Carrillo and G. Toscani, Contractive metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Stat. Phys., 118 (2005), 301-331.doi: 10.1007/s10955-004-8785-5.

    [3]

    C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1039-9.

    [4]

    C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.

    [5]

    R. J. DiPerna and P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys., 120 (1988), 1-23.doi: 10.1007/BF01223204.

    [6]

    R. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.doi: 10.1007/s00220-010-1110-z.

    [7]

    R. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.doi: 10.1007/s00205-010-0318-6.

    [8]

    R. Duan, T. Yang and H. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386.doi: 10.1016/j.jde.2012.03.012.

    [9]

    R. Duan, T. Yang and H. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Methods Appl. Sci., 23 (2013), 979-1028.doi: 10.1142/S0218202513500012.

    [10]

    R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.doi: 10.1137/1.9781611971477.

    [11]

    F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation, Arch. Rational Mech. Anal., 103 (1988), 81-96.doi: 10.1007/BF00292921.

    [12]

    Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.doi: 10.1002/cpa.10040.

    [13]

    Y. Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169 (2003), 305-353.doi: 10.1007/s00205-003-0262-9.

    [14]

    Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.doi: 10.1512/iumj.2004.53.2574.

    [15]

    Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.doi: 10.1002/cpa.20121.

    [16]

    K. Hamdache, Estimations uniformes des solutions de l'équation de Boltzmann par les méthodes de viscosité artificielle et de diffusion de Fokker-Planck, (French) [Uniform estimates for solutions of the perturbed Boltzmann equation by artificial viscosity or Fokker-Planck diffusion], C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 187-190.

    [17]

    S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Ph.D thesis, Kyoto University, 1983. Available from: http://hdl.handle.net/2433/97887.

    [18]

    H.-L. Li and A. Matsumura, Behaviour of the Fokker-Planck-Boltzmann equation near a Maxwellian, Arch. Ration. Mech. Anal., 189 (2008), 1-44.doi: 10.1007/s00205-007-0057-5.

    [19]

    T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation, Phys. D, 188 (2004), 178-192.doi: 10.1016/j.physd.2003.07.011.

    [20]

    T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: 10.1007/s00220-003-1030-2.

    [21]

    S. K. Loyalka, Rarefied gas dynamic problems in environmental sciences, in Proceedings 15th International Symposium on Rarefied Gas Dynamics (eds. V. Boffi and C. Cercignani), Teubner, Stuttgart, 1986.

    [22]

    C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.doi: 10.1080/03605300600635004.

    [23]

    W. A. Strauss, Decay and asymptotics for $u_{t t} - \Delta u=F(u)$, J. Functional Analysis, 2 (1968), 409-457.doi: 10.1016/0022-1236(68)90004-9.

    [24]

    R. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.doi: 10.1007/s00205-007-0067-3.

    [25]

    C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, 71-305.doi: 10.1016/S1874-5792(02)80004-0.

    [26]

    C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp.doi: 10.1090/S0065-9266-09-00567-5.

    [27]

    S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.doi: 10.3792/pja/1195519027.

    [28]

    S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions, Anal. Appl. (Singap.), 4 (2006), 263-310.doi: 10.1142/S0219530506000784.

    [29]

    M.-Y. Zhong and H.-L. Li, Long time behavior of the Fokker-Planck-Boltzmann equation with soft potential, Quart. Appl. Math., 70 (2012), 721-742.doi: 10.1090/S0033-569X-2012-01269-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return