March  2014, 7(1): 195-203. doi: 10.3934/krm.2014.7.195

Blowup of smooth solutions to the full compressible MHD system with compact density

1. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan

2. 

School of Mathematics and Information Science, Henan polytechnic University, Jiaozuo 454000, Henan, China

Received  July 2013 Revised  September 2013 Published  December 2013

This paper studies the blowup of smooth solutions to the full compressible MHD system with zero resistivity on $\mathbb{R}^{d}$, $d\geq 1$. We obtain that the smooth solutions to the MHD system will blow up in finite time, if the initial density is compactly supported.
Citation: Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic & Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195
References:
[1]

D.-F. Bian and B.-L. Guo, Blow-up of smooth solutions to the isentropic compressible MHD equations,, to appear in \emph{Applicable Analysis}, (2013).  doi: 10.1080/00036811.2013.766324.  Google Scholar

[2]

Y. Cho and B. J. Jin, Blow-up of viscous heat-conducting compressible flows,, \emph{J. Math. Anal. Appl.}, 320 (2006), 819.  doi: 10.1016/j.jmaa.2005.08.005.  Google Scholar

[3]

D. Du, J. Li and K. Zhang, Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids,, \emph{Commun. Math. Sci.}, 11 (2013), 541.  doi: 10.4310/CMS.2013.v11.n2.a11.  Google Scholar

[4]

O. Rozanova, Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy,, in \emph{Hyperbolic Problems: Theory, (2009), 911.  doi: 10.1090/psapm/067.2/2605286.  Google Scholar

[5]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations,, \emph{J. Differential Equations}, 245 (2008), 1762.  doi: 10.1016/j.jde.2008.07.007.  Google Scholar

[6]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 229.   Google Scholar

[7]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations,, \emph{Commun. Math. Sci.}, 321 (2013), 529.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

show all references

References:
[1]

D.-F. Bian and B.-L. Guo, Blow-up of smooth solutions to the isentropic compressible MHD equations,, to appear in \emph{Applicable Analysis}, (2013).  doi: 10.1080/00036811.2013.766324.  Google Scholar

[2]

Y. Cho and B. J. Jin, Blow-up of viscous heat-conducting compressible flows,, \emph{J. Math. Anal. Appl.}, 320 (2006), 819.  doi: 10.1016/j.jmaa.2005.08.005.  Google Scholar

[3]

D. Du, J. Li and K. Zhang, Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids,, \emph{Commun. Math. Sci.}, 11 (2013), 541.  doi: 10.4310/CMS.2013.v11.n2.a11.  Google Scholar

[4]

O. Rozanova, Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy,, in \emph{Hyperbolic Problems: Theory, (2009), 911.  doi: 10.1090/psapm/067.2/2605286.  Google Scholar

[5]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations,, \emph{J. Differential Equations}, 245 (2008), 1762.  doi: 10.1016/j.jde.2008.07.007.  Google Scholar

[6]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 229.   Google Scholar

[7]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations,, \emph{Commun. Math. Sci.}, 321 (2013), 529.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]