June  2014, 7(2): 205-218. doi: 10.3934/krm.2014.7.205

Non-existence and non-uniqueness for multidimensional sticky particle systems

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, University of Akron, Akron, OH 44325, United States

Received  December 2013 Revised  February 2014 Published  March 2014

The paper is concerned with sticky weak solutions to the equations of pressureless gases in two or more space dimensions. Various initial data are constructed, showing that the Cauchy problem can have (i) two distinct sticky solutions, or (ii) no sticky solution, not even locally in time. In both cases the initial density is smooth with compact support, while the initial velocity field is continuous.
Citation: Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic & Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205
References:
[1]

Comm. Part. Diff. Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.  Google Scholar

[2]

J. Math. Pures Appl., 99 (2013), 577-617. doi: 10.1016/j.matpur.2012.09.013.  Google Scholar

[3]

SIAM J. Numer. Anal., 35 (1998), 2317-2328. doi: 10.1137/S0036142997317353.  Google Scholar

[4]

Comm. Math. Phys., 177 (1996), 349-380. doi: 10.1007/BF02101897.  Google Scholar

[5]

Comm. Math. Phys., 222 (2001), 117-146. doi: 10.1007/s002200100506.  Google Scholar

[6]

SIAM J. Math. Anal., 41 (2009), 1340-1365. doi: 10.1137/090750809.  Google Scholar

[7]

SIAM J. Math. Anal., 40 (2008), 754-775. doi: 10.1137/070704459.  Google Scholar

[8]

preprint, (2013). Google Scholar

[9]

Diff. Integral Equat., 14 (2001), 1077-1092.  Google Scholar

[10]

Astro. & Astrophys., 5 (1970), 84-89. Google Scholar

show all references

References:
[1]

Comm. Part. Diff. Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.  Google Scholar

[2]

J. Math. Pures Appl., 99 (2013), 577-617. doi: 10.1016/j.matpur.2012.09.013.  Google Scholar

[3]

SIAM J. Numer. Anal., 35 (1998), 2317-2328. doi: 10.1137/S0036142997317353.  Google Scholar

[4]

Comm. Math. Phys., 177 (1996), 349-380. doi: 10.1007/BF02101897.  Google Scholar

[5]

Comm. Math. Phys., 222 (2001), 117-146. doi: 10.1007/s002200100506.  Google Scholar

[6]

SIAM J. Math. Anal., 41 (2009), 1340-1365. doi: 10.1137/090750809.  Google Scholar

[7]

SIAM J. Math. Anal., 40 (2008), 754-775. doi: 10.1137/070704459.  Google Scholar

[8]

preprint, (2013). Google Scholar

[9]

Diff. Integral Equat., 14 (2001), 1077-1092.  Google Scholar

[10]

Astro. & Astrophys., 5 (1970), 84-89. Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[3]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[4]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021045

[7]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[9]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[10]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[11]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[12]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[13]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[14]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[15]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[16]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[17]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[18]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[19]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

[20]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]