June  2014, 7(2): 205-218. doi: 10.3934/krm.2014.7.205

Non-existence and non-uniqueness for multidimensional sticky particle systems

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, University of Akron, Akron, OH 44325, United States

Received  December 2013 Revised  February 2014 Published  March 2014

The paper is concerned with sticky weak solutions to the equations of pressureless gases in two or more space dimensions. Various initial data are constructed, showing that the Cauchy problem can have (i) two distinct sticky solutions, or (ii) no sticky solution, not even locally in time. In both cases the initial density is smooth with compact support, while the initial velocity field is continuous.
Citation: Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic and Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205
References:
[1]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Part. Diff. Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.

[2]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions, J. Math. Pures Appl., 99 (2013), 577-617. doi: 10.1016/j.matpur.2012.09.013.

[3]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328. doi: 10.1137/S0036142997317353.

[4]

W. E, Yu. Rykov and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. doi: 10.1007/BF02101897.

[5]

F. Huang and Z. Wang, Well posedness for pressureless flow, Comm. Math. Phys., 222 (2001), 117-146. doi: 10.1007/s002200100506.

[6]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal., 41 (2009), 1340-1365. doi: 10.1137/090750809.

[7]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM J. Math. Anal., 40 (2008), 754-775. doi: 10.1137/070704459.

[8]

T. Nguyen and A. Tudorascu, One-dimensional pressureless gas systems with/without viscosity, preprint, (2013).

[9]

M. Sever, An existence theorem in the large for zero-pressure gas dynamics, Diff. Integral Equat., 14 (2001), 1077-1092.

[10]

Y. B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations, Astro. & Astrophys., 5 (1970), 84-89.

show all references

References:
[1]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Part. Diff. Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.

[2]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions, J. Math. Pures Appl., 99 (2013), 577-617. doi: 10.1016/j.matpur.2012.09.013.

[3]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328. doi: 10.1137/S0036142997317353.

[4]

W. E, Yu. Rykov and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. doi: 10.1007/BF02101897.

[5]

F. Huang and Z. Wang, Well posedness for pressureless flow, Comm. Math. Phys., 222 (2001), 117-146. doi: 10.1007/s002200100506.

[6]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal., 41 (2009), 1340-1365. doi: 10.1137/090750809.

[7]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM J. Math. Anal., 40 (2008), 754-775. doi: 10.1137/070704459.

[8]

T. Nguyen and A. Tudorascu, One-dimensional pressureless gas systems with/without viscosity, preprint, (2013).

[9]

M. Sever, An existence theorem in the large for zero-pressure gas dynamics, Diff. Integral Equat., 14 (2001), 1077-1092.

[10]

Y. B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations, Astro. & Astrophys., 5 (1970), 84-89.

[1]

Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic and Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015

[2]

Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041

[3]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[4]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[5]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[6]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[7]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[8]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[9]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[10]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[11]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure and Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[12]

Guangyu Xu, Chunlai Mu, Dan Li. Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2491-2512. doi: 10.3934/cpaa.2020109

[13]

Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary. Networks and Heterogeneous Media, 2016, 11 (2) : 251-262. doi: 10.3934/nhm.2016.11.251

[14]

Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059

[15]

Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769

[16]

Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029

[17]

J. F. Toland. Non-existence of global energy minimisers in Stokes waves problems. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3211-3217. doi: 10.3934/dcds.2014.34.3211

[18]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[19]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[20]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (118)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]