June  2014, 7(2): 205-218. doi: 10.3934/krm.2014.7.205

Non-existence and non-uniqueness for multidimensional sticky particle systems

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, University of Akron, Akron, OH 44325, United States

Received  December 2013 Revised  February 2014 Published  March 2014

The paper is concerned with sticky weak solutions to the equations of pressureless gases in two or more space dimensions. Various initial data are constructed, showing that the Cauchy problem can have (i) two distinct sticky solutions, or (ii) no sticky solution, not even locally in time. In both cases the initial density is smooth with compact support, while the initial velocity field is continuous.
Citation: Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic & Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205
References:
[1]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness,, Comm. Part. Diff. Eq., 24 (1999), 2173.  doi: 10.1080/03605309908821498.  Google Scholar

[2]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,, J. Math. Pures Appl., 99 (2013), 577.  doi: 10.1016/j.matpur.2012.09.013.  Google Scholar

[3]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws,, SIAM J. Numer. Anal., 35 (1998), 2317.  doi: 10.1137/S0036142997317353.  Google Scholar

[4]

W. E, Yu. Rykov and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics,, Comm. Math. Phys., 177 (1996), 349.  doi: 10.1007/BF02101897.  Google Scholar

[5]

F. Huang and Z. Wang, Well posedness for pressureless flow,, Comm. Math. Phys., 222 (2001), 117.  doi: 10.1007/s002200100506.  Google Scholar

[6]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340.  doi: 10.1137/090750809.  Google Scholar

[7]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws,, SIAM J. Math. Anal., 40 (2008), 754.  doi: 10.1137/070704459.  Google Scholar

[8]

T. Nguyen and A. Tudorascu, One-dimensional pressureless gas systems with/without viscosity,, preprint, (2013).   Google Scholar

[9]

M. Sever, An existence theorem in the large for zero-pressure gas dynamics,, Diff. Integral Equat., 14 (2001), 1077.   Google Scholar

[10]

Y. B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations,, Astro. & Astrophys., 5 (1970), 84.   Google Scholar

show all references

References:
[1]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness,, Comm. Part. Diff. Eq., 24 (1999), 2173.  doi: 10.1080/03605309908821498.  Google Scholar

[2]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,, J. Math. Pures Appl., 99 (2013), 577.  doi: 10.1016/j.matpur.2012.09.013.  Google Scholar

[3]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws,, SIAM J. Numer. Anal., 35 (1998), 2317.  doi: 10.1137/S0036142997317353.  Google Scholar

[4]

W. E, Yu. Rykov and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics,, Comm. Math. Phys., 177 (1996), 349.  doi: 10.1007/BF02101897.  Google Scholar

[5]

F. Huang and Z. Wang, Well posedness for pressureless flow,, Comm. Math. Phys., 222 (2001), 117.  doi: 10.1007/s002200100506.  Google Scholar

[6]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340.  doi: 10.1137/090750809.  Google Scholar

[7]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws,, SIAM J. Math. Anal., 40 (2008), 754.  doi: 10.1137/070704459.  Google Scholar

[8]

T. Nguyen and A. Tudorascu, One-dimensional pressureless gas systems with/without viscosity,, preprint, (2013).   Google Scholar

[9]

M. Sever, An existence theorem in the large for zero-pressure gas dynamics,, Diff. Integral Equat., 14 (2001), 1077.   Google Scholar

[10]

Y. B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations,, Astro. & Astrophys., 5 (1970), 84.   Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[3]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[4]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[8]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[9]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[10]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[11]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[15]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[16]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[17]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[18]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[19]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[20]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]