March  2014, 7(1): 29-44. doi: 10.3934/krm.2014.7.29

A mathematical model for value estimation with public information and herding

1. 

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  November 2012 Revised  April 2013 Published  December 2013

This paper deals with a class of integro-differential equations modeling the dynamics of a market where agents estimate the value of a given traded good. Two basic mechanisms are assumed to concur in value estimation: interactions between agents and sources of public information and herding phenomena. A general well-posedness result is established for the initial value problem linked to the model and the asymptotic behavior in time of the related solution is characterized for some general parameter settings, which mimic different economic scenarios. Analytical results are illustrated by means of numerical simulations and lead us to conclude that, in spite of its oversimplified nature, this model is able to reproduce some emerging behaviors proper of the system under consideration. In particular, consistently with experimental evidence, the obtained results suggest that if agents are highly confident in the product, imitative and scarcely rational behaviors may lead to an over-exponential rise of the value estimated by the market, paving the way to the formation of economic bubbles.
Citation: Marcello Delitala, Tommaso Lorenzi. A mathematical model for value estimation with public information and herding. Kinetic & Related Models, 2014, 7 (1) : 29-44. doi: 10.3934/krm.2014.7.29
References:
[1]

G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economic systems by functional subsystems representation,, Kin. Rel. Mod., 1 (2008), 249.  doi: 10.3934/krm.2008.1.249.  Google Scholar

[2]

P. Ball, Why Society is a Complex Matter,, Springer-Verlag, (2012).  doi: 10.1007/978-3-642-29000-8.  Google Scholar

[3]

J. Berg, M. Marsili, A. Rustichini and R. Zecchina, Statistical mechanics of asset markets with private information,, J. Quant. Finance, 1 (2001), 203.   Google Scholar

[4]

Y. Biondi, P. Giannoccolo and S. Galam, Formation of share market prices under heterogeneous beliefs and common knowledge,, Physica A, 391 (2012), 5532.  doi: 10.1016/j.physa.2012.06.015.  Google Scholar

[5]

A. Boccabella, R. Natalini and L. Pareschi, On a continuous mixed strategy model for evolutionary game-theory,, Kinet. Relat. Models, 4 (2011), 187.  doi: 10.3934/krm.2011.4.187.  Google Scholar

[6]

D. Borra and T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under bounded confidence,, Commun. Pure Appl. Anal., 12 (2013), 1487.  doi: 10.3934/cpaa.2013.12.1487.  Google Scholar

[7]

J.-P. Bouchaud, Economics need a scientific revolution,, Nature, 455 (2008).  doi: 10.1038/4551181a.  Google Scholar

[8]

J.-P. Bouchaud, The (unfortunate) complexity of the economy,, Physics World, 82 (2009), 28.   Google Scholar

[9]

L. Boudin and F. Salvarani, Modeling Opinion Formation by Means of Kinetic Equations,, in Mathematical modeling of collective behavior in socio-economic and life sciences, (2010).  doi: 10.1007/978-0-8176-4946-3_10.  Google Scholar

[10]

L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior,, Kinet. Relat. Models, 2 (2009), 433.  doi: 10.3934/krm.2009.2.433.  Google Scholar

[11]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.  doi: 10.1007/s10955-005-5456-0.  Google Scholar

[12]

M. Cristelli, L. Pietronero and A. Zaccaria, Critical Overview of Agent-Based Models for Economics,, Proceedings of the School of Physics E. Fermi, (2010).   Google Scholar

[13]

B. During, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck Equations modelling Opinion Formation in the Presence of strong Leaders,, Proc. Royal Soc. A, 465 (2009), 3687.  doi: 10.1098/rspa.2009.0239.  Google Scholar

[14]

R. Gatignol, Théorie Cinétique des Gaz à Répartition Discréte des Vitèsses,, (French) Lecture Notes in Physics, (1975).   Google Scholar

[15]

E. Eyster and M. Rabin, naïve herding in rich-information settings,, AEJ Microeconomics, 2 (2010), 221.  doi: 10.1257/mic.2.4.221.  Google Scholar

[16]

T. Kaizoji and D. Sornette, Market Bubbles and Crashes,, in Encyclopedia of quantitative finance, (2010).  doi: 10.1143/PTPS.162.165.  Google Scholar

[17]

J.-M. Lasry and P.-L. Lions, Mean field games,, Japan. J. Math., 2 (2007), 229.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[18]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.  doi: 10.1142/S0129183107011789.  Google Scholar

[19]

T. Lux, Herd behaviour, bubbles and crashes,, Economic Journal, 105 (1995), 881.  doi: 10.2307/2235156.  Google Scholar

[20]

D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets,, Physica A, 391 (2012), 715.  doi: 10.1016/j.physa.2011.08.013.  Google Scholar

[21]

M. Marsili, D. Challet and R. Zecchina, Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact,, Physica A: Statistical Mechanics and its Applications, 280 (2000), 522.  doi: 10.1016/S0378-4371(99)00610-X.  Google Scholar

[22]

Q. Michard and J.-P. Bouchaud, Theory of collective opinion shifts: From smooth trends to abrupt swings,, Eur. Phys. J. B, 47 (2005), 151.  doi: 10.1140/epjb/e2005-00307-0.  Google Scholar

[23]

B. Perthame, Trasport Equations in Biology,, Frontiers in Mathematics. Birkäuser Verlag, (2007).   Google Scholar

[24]

H. A. Simon, Invariants of human behavior,, Annu. Rev. Psychol., 41 (1990), 1.   Google Scholar

[25]

G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods,, J. Stat. Phys., 151 (2013), 549.  doi: 10.1007/s10955-012-0653-0.  Google Scholar

show all references

References:
[1]

G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economic systems by functional subsystems representation,, Kin. Rel. Mod., 1 (2008), 249.  doi: 10.3934/krm.2008.1.249.  Google Scholar

[2]

P. Ball, Why Society is a Complex Matter,, Springer-Verlag, (2012).  doi: 10.1007/978-3-642-29000-8.  Google Scholar

[3]

J. Berg, M. Marsili, A. Rustichini and R. Zecchina, Statistical mechanics of asset markets with private information,, J. Quant. Finance, 1 (2001), 203.   Google Scholar

[4]

Y. Biondi, P. Giannoccolo and S. Galam, Formation of share market prices under heterogeneous beliefs and common knowledge,, Physica A, 391 (2012), 5532.  doi: 10.1016/j.physa.2012.06.015.  Google Scholar

[5]

A. Boccabella, R. Natalini and L. Pareschi, On a continuous mixed strategy model for evolutionary game-theory,, Kinet. Relat. Models, 4 (2011), 187.  doi: 10.3934/krm.2011.4.187.  Google Scholar

[6]

D. Borra and T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under bounded confidence,, Commun. Pure Appl. Anal., 12 (2013), 1487.  doi: 10.3934/cpaa.2013.12.1487.  Google Scholar

[7]

J.-P. Bouchaud, Economics need a scientific revolution,, Nature, 455 (2008).  doi: 10.1038/4551181a.  Google Scholar

[8]

J.-P. Bouchaud, The (unfortunate) complexity of the economy,, Physics World, 82 (2009), 28.   Google Scholar

[9]

L. Boudin and F. Salvarani, Modeling Opinion Formation by Means of Kinetic Equations,, in Mathematical modeling of collective behavior in socio-economic and life sciences, (2010).  doi: 10.1007/978-0-8176-4946-3_10.  Google Scholar

[10]

L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior,, Kinet. Relat. Models, 2 (2009), 433.  doi: 10.3934/krm.2009.2.433.  Google Scholar

[11]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.  doi: 10.1007/s10955-005-5456-0.  Google Scholar

[12]

M. Cristelli, L. Pietronero and A. Zaccaria, Critical Overview of Agent-Based Models for Economics,, Proceedings of the School of Physics E. Fermi, (2010).   Google Scholar

[13]

B. During, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck Equations modelling Opinion Formation in the Presence of strong Leaders,, Proc. Royal Soc. A, 465 (2009), 3687.  doi: 10.1098/rspa.2009.0239.  Google Scholar

[14]

R. Gatignol, Théorie Cinétique des Gaz à Répartition Discréte des Vitèsses,, (French) Lecture Notes in Physics, (1975).   Google Scholar

[15]

E. Eyster and M. Rabin, naïve herding in rich-information settings,, AEJ Microeconomics, 2 (2010), 221.  doi: 10.1257/mic.2.4.221.  Google Scholar

[16]

T. Kaizoji and D. Sornette, Market Bubbles and Crashes,, in Encyclopedia of quantitative finance, (2010).  doi: 10.1143/PTPS.162.165.  Google Scholar

[17]

J.-M. Lasry and P.-L. Lions, Mean field games,, Japan. J. Math., 2 (2007), 229.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[18]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.  doi: 10.1142/S0129183107011789.  Google Scholar

[19]

T. Lux, Herd behaviour, bubbles and crashes,, Economic Journal, 105 (1995), 881.  doi: 10.2307/2235156.  Google Scholar

[20]

D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets,, Physica A, 391 (2012), 715.  doi: 10.1016/j.physa.2011.08.013.  Google Scholar

[21]

M. Marsili, D. Challet and R. Zecchina, Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact,, Physica A: Statistical Mechanics and its Applications, 280 (2000), 522.  doi: 10.1016/S0378-4371(99)00610-X.  Google Scholar

[22]

Q. Michard and J.-P. Bouchaud, Theory of collective opinion shifts: From smooth trends to abrupt swings,, Eur. Phys. J. B, 47 (2005), 151.  doi: 10.1140/epjb/e2005-00307-0.  Google Scholar

[23]

B. Perthame, Trasport Equations in Biology,, Frontiers in Mathematics. Birkäuser Verlag, (2007).   Google Scholar

[24]

H. A. Simon, Invariants of human behavior,, Annu. Rev. Psychol., 41 (1990), 1.   Google Scholar

[25]

G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods,, J. Stat. Phys., 151 (2013), 549.  doi: 10.1007/s10955-012-0653-0.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[4]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[5]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[6]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[7]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[12]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[13]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[16]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[17]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[18]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[19]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[20]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]