-
Previous Article
Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion
- KRM Home
- This Issue
-
Next Article
Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$
A mathematical model for value estimation with public information and herding
1. | Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino |
References:
[1] |
G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economic systems by functional subsystems representation,, Kin. Rel. Mod., 1 (2008), 249.
doi: 10.3934/krm.2008.1.249. |
[2] |
P. Ball, Why Society is a Complex Matter,, Springer-Verlag, (2012).
doi: 10.1007/978-3-642-29000-8. |
[3] |
J. Berg, M. Marsili, A. Rustichini and R. Zecchina, Statistical mechanics of asset markets with private information,, J. Quant. Finance, 1 (2001), 203. Google Scholar |
[4] |
Y. Biondi, P. Giannoccolo and S. Galam, Formation of share market prices under heterogeneous beliefs and common knowledge,, Physica A, 391 (2012), 5532.
doi: 10.1016/j.physa.2012.06.015. |
[5] |
A. Boccabella, R. Natalini and L. Pareschi, On a continuous mixed strategy model for evolutionary game-theory,, Kinet. Relat. Models, 4 (2011), 187.
doi: 10.3934/krm.2011.4.187. |
[6] |
D. Borra and T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under bounded confidence,, Commun. Pure Appl. Anal., 12 (2013), 1487.
doi: 10.3934/cpaa.2013.12.1487. |
[7] |
J.-P. Bouchaud, Economics need a scientific revolution,, Nature, 455 (2008).
doi: 10.1038/4551181a. |
[8] |
J.-P. Bouchaud, The (unfortunate) complexity of the economy,, Physics World, 82 (2009), 28. Google Scholar |
[9] |
L. Boudin and F. Salvarani, Modeling Opinion Formation by Means of Kinetic Equations,, in Mathematical modeling of collective behavior in socio-economic and life sciences, (2010).
doi: 10.1007/978-0-8176-4946-3_10. |
[10] |
L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior,, Kinet. Relat. Models, 2 (2009), 433.
doi: 10.3934/krm.2009.2.433. |
[11] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.
doi: 10.1007/s10955-005-5456-0. |
[12] |
M. Cristelli, L. Pietronero and A. Zaccaria, Critical Overview of Agent-Based Models for Economics,, Proceedings of the School of Physics E. Fermi, (2010). Google Scholar |
[13] |
B. During, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck Equations modelling Opinion Formation in the Presence of strong Leaders,, Proc. Royal Soc. A, 465 (2009), 3687.
doi: 10.1098/rspa.2009.0239. |
[14] |
R. Gatignol, Théorie Cinétique des Gaz à Répartition Discréte des Vitèsses,, (French) Lecture Notes in Physics, (1975).
|
[15] |
E. Eyster and M. Rabin, naïve herding in rich-information settings,, AEJ Microeconomics, 2 (2010), 221.
doi: 10.1257/mic.2.4.221. |
[16] |
T. Kaizoji and D. Sornette, Market Bubbles and Crashes,, in Encyclopedia of quantitative finance, (2010).
doi: 10.1143/PTPS.162.165. |
[17] |
J.-M. Lasry and P.-L. Lions, Mean field games,, Japan. J. Math., 2 (2007), 229.
doi: 10.1007/s11537-007-0657-8. |
[18] |
J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.
doi: 10.1142/S0129183107011789. |
[19] |
T. Lux, Herd behaviour, bubbles and crashes,, Economic Journal, 105 (1995), 881.
doi: 10.2307/2235156. |
[20] |
D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets,, Physica A, 391 (2012), 715.
doi: 10.1016/j.physa.2011.08.013. |
[21] |
M. Marsili, D. Challet and R. Zecchina, Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact,, Physica A: Statistical Mechanics and its Applications, 280 (2000), 522.
doi: 10.1016/S0378-4371(99)00610-X. |
[22] |
Q. Michard and J.-P. Bouchaud, Theory of collective opinion shifts: From smooth trends to abrupt swings,, Eur. Phys. J. B, 47 (2005), 151.
doi: 10.1140/epjb/e2005-00307-0. |
[23] |
B. Perthame, Trasport Equations in Biology,, Frontiers in Mathematics. Birkäuser Verlag, (2007).
|
[24] |
H. A. Simon, Invariants of human behavior,, Annu. Rev. Psychol., 41 (1990), 1. Google Scholar |
[25] |
G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods,, J. Stat. Phys., 151 (2013), 549.
doi: 10.1007/s10955-012-0653-0. |
show all references
References:
[1] |
G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economic systems by functional subsystems representation,, Kin. Rel. Mod., 1 (2008), 249.
doi: 10.3934/krm.2008.1.249. |
[2] |
P. Ball, Why Society is a Complex Matter,, Springer-Verlag, (2012).
doi: 10.1007/978-3-642-29000-8. |
[3] |
J. Berg, M. Marsili, A. Rustichini and R. Zecchina, Statistical mechanics of asset markets with private information,, J. Quant. Finance, 1 (2001), 203. Google Scholar |
[4] |
Y. Biondi, P. Giannoccolo and S. Galam, Formation of share market prices under heterogeneous beliefs and common knowledge,, Physica A, 391 (2012), 5532.
doi: 10.1016/j.physa.2012.06.015. |
[5] |
A. Boccabella, R. Natalini and L. Pareschi, On a continuous mixed strategy model for evolutionary game-theory,, Kinet. Relat. Models, 4 (2011), 187.
doi: 10.3934/krm.2011.4.187. |
[6] |
D. Borra and T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under bounded confidence,, Commun. Pure Appl. Anal., 12 (2013), 1487.
doi: 10.3934/cpaa.2013.12.1487. |
[7] |
J.-P. Bouchaud, Economics need a scientific revolution,, Nature, 455 (2008).
doi: 10.1038/4551181a. |
[8] |
J.-P. Bouchaud, The (unfortunate) complexity of the economy,, Physics World, 82 (2009), 28. Google Scholar |
[9] |
L. Boudin and F. Salvarani, Modeling Opinion Formation by Means of Kinetic Equations,, in Mathematical modeling of collective behavior in socio-economic and life sciences, (2010).
doi: 10.1007/978-0-8176-4946-3_10. |
[10] |
L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior,, Kinet. Relat. Models, 2 (2009), 433.
doi: 10.3934/krm.2009.2.433. |
[11] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.
doi: 10.1007/s10955-005-5456-0. |
[12] |
M. Cristelli, L. Pietronero and A. Zaccaria, Critical Overview of Agent-Based Models for Economics,, Proceedings of the School of Physics E. Fermi, (2010). Google Scholar |
[13] |
B. During, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck Equations modelling Opinion Formation in the Presence of strong Leaders,, Proc. Royal Soc. A, 465 (2009), 3687.
doi: 10.1098/rspa.2009.0239. |
[14] |
R. Gatignol, Théorie Cinétique des Gaz à Répartition Discréte des Vitèsses,, (French) Lecture Notes in Physics, (1975).
|
[15] |
E. Eyster and M. Rabin, naïve herding in rich-information settings,, AEJ Microeconomics, 2 (2010), 221.
doi: 10.1257/mic.2.4.221. |
[16] |
T. Kaizoji and D. Sornette, Market Bubbles and Crashes,, in Encyclopedia of quantitative finance, (2010).
doi: 10.1143/PTPS.162.165. |
[17] |
J.-M. Lasry and P.-L. Lions, Mean field games,, Japan. J. Math., 2 (2007), 229.
doi: 10.1007/s11537-007-0657-8. |
[18] |
J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.
doi: 10.1142/S0129183107011789. |
[19] |
T. Lux, Herd behaviour, bubbles and crashes,, Economic Journal, 105 (1995), 881.
doi: 10.2307/2235156. |
[20] |
D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets,, Physica A, 391 (2012), 715.
doi: 10.1016/j.physa.2011.08.013. |
[21] |
M. Marsili, D. Challet and R. Zecchina, Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact,, Physica A: Statistical Mechanics and its Applications, 280 (2000), 522.
doi: 10.1016/S0378-4371(99)00610-X. |
[22] |
Q. Michard and J.-P. Bouchaud, Theory of collective opinion shifts: From smooth trends to abrupt swings,, Eur. Phys. J. B, 47 (2005), 151.
doi: 10.1140/epjb/e2005-00307-0. |
[23] |
B. Perthame, Trasport Equations in Biology,, Frontiers in Mathematics. Birkäuser Verlag, (2007).
|
[24] |
H. A. Simon, Invariants of human behavior,, Annu. Rev. Psychol., 41 (1990), 1. Google Scholar |
[25] |
G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods,, J. Stat. Phys., 151 (2013), 549.
doi: 10.1007/s10955-012-0653-0. |
[1] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[2] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[3] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[4] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[5] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[6] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[7] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[8] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[9] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[10] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[11] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[12] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[13] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[14] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[15] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[16] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[17] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[18] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[19] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[20] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]