June  2014, 7(2): 291-304. doi: 10.3934/krm.2014.7.291

Regularity criteria for the 3D MHD equations via partial derivatives. II

1. 

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang

Received  May 2013 Revised  November 2013 Published  March 2014

In this paper we continue studying regularity criteria for the 3D MHD equations via partial derivatives of the velocity or the pressure. We obtain some new regularity criteria which improve the related results in [1,3,9,11,17]. Precisely, we first prove that if for any $ i,\,j,\,k\in \{1,2,3\}$ there holds $ (\frac{\partial u_1}{\partial x_i},\,\frac{\partial u_2}{\partial x_j},\,\frac{\partial u_3}{\partial x_k}) \in L_T^{\alpha,\gamma}$ with $\frac{2}{\alpha}+\frac{3}{\gamma}\leq 1+\frac{1}{\gamma},~2\leq \gamma\leq \infty $, then the solution $(u,b)$ is smooth on $\mathbb{R}^3\times(0,T]$. Secondly, we show that any component (resp. components) of $(\frac{\partial u_1}{\partial x_i},\,\frac{\partial u_2}{\partial x_j},\,\frac{\partial u_3}{\partial x_k})$ in the criterion above can be replaced by the corresponding velocity component (resp. components) which is (resp. are) in the space $L_T^{\alpha',\gamma'}$with $\frac{2}{\alpha'}+\frac{3}{\gamma'}\leq 1$, $3< \gamma'\leq \infty$. Fianlly, we obtain a Ladyzhenskaya-Prodi-Serrin type regularity condition involving two components of the gradient of pressure, which in fact partially answers an open question proposed in [9] and improves Theorem 3.3 in Berselli and Galdi's article [1].
Citation: Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic and Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291
References:
[1]

L. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585-3595. doi: 10.1090/S0002-9939-02-06697-2.

[2]

C. Cao and E. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932. doi: 10.1007/s00205-011-0439-6.

[3]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274. doi: 10.1016/j.jde.2009.09.020.

[4]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930. doi: 10.1007/s00220-008-0545-y.

[5]

H. Duan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Appl. Anal., 91 (2012), 947-952. doi: 10.1080/00036811.2011.556626.

[6]

G. Duvaut and J. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279.

[7]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254. doi: 10.1016/j.jde.2004.07.002.

[8]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics, J. Math. Anal. Appl., 369 (2010), 317-322. doi: 10.1016/j.jmaa.2010.03.015.

[9]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations via partial derivatives, Kinet. Relat. Models, 5 (2012), 505-516. doi: 10.3934/krm.2012.5.505.

[10]

X. Jia and Y. Zhou, A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressure, J. Math. Anal. Appl., 396 (2012), 345-350. doi: 10.1016/j.jmaa.2012.06.016.

[11]

H. Lin and L. Du, Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity, 26 (2013), 219-239. doi: 10.1088/0951-7715/26/1/219.

[12]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664. doi: 10.1002/cpa.3160360506.

[13]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535. doi: 10.1016/j.nonrwa.2012.07.013.

[14]

J. Wu, Viscous and inviscid magnetohydrodynamics equations, J. Anal. Math., 73 (1997), 251-265. doi: 10.1007/BF02788146.

[15]

J. Wu, Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci., 12 (2002), 395-413. doi: 10.1007/s00332-002-0486-0.

[16]

J. Wu, Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 10 (2004), 543-556.

[17]

K. Yamazaki, Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems, J. Math. Phys., 54 (2013), 011502, 16pp. doi: 10.1063/1.4773833.

[18]

Z. Zhang, Z. Yao, M. Lu and L. Ni, Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations, J. Math. Phys., 52 (2011), 053103, 7 pp. doi: 10.1063/1.3589966.

[19]

Z. Zhang, P. Li and G. Yu, Regularity criteria for the 3D MHD equations via one directional derivative of the pressure, J. Math. Anal. Appl., 401 (2013), 66-71. doi: 10.1016/j.jmaa.2012.11.022.

[20]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886. doi: 10.3934/dcds.2005.12.881.

[21]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Int. J. Non-Linear Mech., 41 (2006), 1174-1180. doi: 10.1016/j.ijnonlinmec.2006.12.001.

[22]

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbbR^3$, Proc. Amer. Math. Soc., 134 (2006), 149-156. doi: 10.1090/S0002-9939-05-08312-7.

[23]

Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $\mathbbR^N$, Z. Angew. Math. Phys., 57 (2006), 384-392. doi: 10.1007/s00033-005-0021-x.

show all references

References:
[1]

L. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585-3595. doi: 10.1090/S0002-9939-02-06697-2.

[2]

C. Cao and E. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932. doi: 10.1007/s00205-011-0439-6.

[3]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274. doi: 10.1016/j.jde.2009.09.020.

[4]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930. doi: 10.1007/s00220-008-0545-y.

[5]

H. Duan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Appl. Anal., 91 (2012), 947-952. doi: 10.1080/00036811.2011.556626.

[6]

G. Duvaut and J. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279.

[7]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254. doi: 10.1016/j.jde.2004.07.002.

[8]

E. Ji and J. Lee, Some regularity criteria for the 3D incompressible magnetohydrodynamics, J. Math. Anal. Appl., 369 (2010), 317-322. doi: 10.1016/j.jmaa.2010.03.015.

[9]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations via partial derivatives, Kinet. Relat. Models, 5 (2012), 505-516. doi: 10.3934/krm.2012.5.505.

[10]

X. Jia and Y. Zhou, A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressure, J. Math. Anal. Appl., 396 (2012), 345-350. doi: 10.1016/j.jmaa.2012.06.016.

[11]

H. Lin and L. Du, Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity, 26 (2013), 219-239. doi: 10.1088/0951-7715/26/1/219.

[12]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664. doi: 10.1002/cpa.3160360506.

[13]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535. doi: 10.1016/j.nonrwa.2012.07.013.

[14]

J. Wu, Viscous and inviscid magnetohydrodynamics equations, J. Anal. Math., 73 (1997), 251-265. doi: 10.1007/BF02788146.

[15]

J. Wu, Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci., 12 (2002), 395-413. doi: 10.1007/s00332-002-0486-0.

[16]

J. Wu, Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 10 (2004), 543-556.

[17]

K. Yamazaki, Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems, J. Math. Phys., 54 (2013), 011502, 16pp. doi: 10.1063/1.4773833.

[18]

Z. Zhang, Z. Yao, M. Lu and L. Ni, Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations, J. Math. Phys., 52 (2011), 053103, 7 pp. doi: 10.1063/1.3589966.

[19]

Z. Zhang, P. Li and G. Yu, Regularity criteria for the 3D MHD equations via one directional derivative of the pressure, J. Math. Anal. Appl., 401 (2013), 66-71. doi: 10.1016/j.jmaa.2012.11.022.

[20]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886. doi: 10.3934/dcds.2005.12.881.

[21]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Int. J. Non-Linear Mech., 41 (2006), 1174-1180. doi: 10.1016/j.ijnonlinmec.2006.12.001.

[22]

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbbR^3$, Proc. Amer. Math. Soc., 134 (2006), 149-156. doi: 10.1090/S0002-9939-05-08312-7.

[23]

Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $\mathbbR^N$, Z. Angew. Math. Phys., 57 (2006), 384-392. doi: 10.1007/s00033-005-0021-x.

[1]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic and Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[2]

Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic and Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293

[3]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[4]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure and Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[5]

Zijin Li, Xinghong Pan. One component regularity criteria for the axially symmetric MHD-Boussinesq system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2333-2353. doi: 10.3934/dcds.2021192

[6]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[7]

Jishan Fan, Tohru Ozawa. Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion. Kinetic and Related Models, 2014, 7 (1) : 45-56. doi: 10.3934/krm.2014.7.45

[8]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[9]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure and Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[10]

Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa. The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations. Electronic Research Archive, 2020, 28 (1) : 183-193. doi: 10.3934/era.2020012

[11]

Feng Cheng, Chao-Jiang Xu. On the Gevrey regularity of solutions to the 3D ideal MHD equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6485-6506. doi: 10.3934/dcds.2019281

[12]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[13]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[14]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[15]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[16]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[17]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117

[18]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

[19]

Yana Guo, Yan Jia, Bo-Qing Dong. Global stability solution of the 2D MHD equations with mixed partial dissipation. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 885-902. doi: 10.3934/dcds.2021141

[20]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (156)
  • HTML views (0)
  • Cited by (30)

Other articles
by authors

[Back to Top]