Citation: |
[1] |
C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les Ingalités de Sobolev Logarithmiques, Société mathématique de France, Paris, 2000. |
[2] |
A. Arnold, E. Carlen and Q. JU, Large-time behavior of non-symmetric Fokker-Planck type equations, Comm. Stoch. Anal., 2 (2008), 153-175. |
[3] |
A. Arnold, J. A. Carrillo and C. Manzini, Refined long-time asymptotics for some polymeric fluid flow models, Commun. Math. Sci., 8 (2010), 763-782.doi: 10.4310/CMS.2010.v8.n3.a8. |
[4] |
D. Bakry, P. Cattiaux and A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759.doi: 10.1016/j.jfa.2007.11.002. |
[5] |
J.-B. Bardet, A. Christen, A. Guillin, F. Malrieu and P.-A. Zitt, Total variation estimates for the TCP process, Elec. Journ. Probab, 18 (2013), 1-21.doi: 10.1214/EJP.v18-1720. |
[6] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Quantitative ergodicity for some switched dynamical systems, Elec. Com. Probab., 17 (2012), 1-14. |
[7] |
F. Bolley, A. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884.doi: 10.1051/m2an/2010045. |
[8] |
S. Calogero, Exponential convergence to equilibrium for kinetic Fokker-Planck equations, Comm. Partial Differential Equations, 37 (2012), 1357-1390.doi: 10.1080/03605302.2011.648039. |
[9] |
D. Chafai, F. Malrieu and K. Paroux, On the long time behavior of the TCP window size process, Stochastic Process. Appl., 120 (2010), 1518-1534.doi: 10.1016/j.spa.2010.03.019. |
[10] |
L. Desvillettes, Hypocoercivity: The example of linear transport, Contemp. Math., 409 (2006), 33-53.doi: 10.1090/conm/409/07705. |
[11] |
L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9. |
[12] |
L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[13] |
P. Diaconis, S. Holmes and R. M. Neal, Analysis of a nonreversible Markov chain sampler, Ann. Appl. Probab., 10 (2000), 685-1064.doi: 10.1214/aoap/1019487508. |
[14] |
P. Diaconis and L. Miclo, On the spectral analysis of second-order Markov chains, Ann. Fac. Sci. Toulouse Math. (6), 22 (2013), 573-621.doi: 10.5802/afst.1383. |
[15] | |
[16] |
J. Dolbeault, C. Mouhot and C. Shmeiser, Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential, Transactions of the American Mathematical Society, to appear. |
[17] |
J. Dolbeault, C. Mouhot and C. Shmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math. Acad. Sci. Paris, 347 (2009), 511-516.doi: 10.1016/j.crma.2009.02.025. |
[18] |
R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of $f$-ergodic strong Markov processes, Stochastic Process. Appl., 119 (2009), 897-923.doi: 10.1016/j.spa.2008.03.007. |
[19] |
J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys., 235 (2003), 233-253.doi: 10.1007/s00220-003-0805-9. |
[20] |
J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Comm. Math. Phys., 212 (2000), 105-164.doi: 10.1007/s002200000216. |
[21] |
K. Fellner, L. Neumann and C. Schmeiser, Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatsh. Math., 141 (2004), 289-299.doi: 10.1007/s00605-002-0058-2. |
[22] |
F. Filbet, C. Mouhot and L. Pareschi, Solving the Boltzmann equation in $N\log_2N$, SIAM J. Sci. Comput., 28 (2006), 1029-1053.doi: 10.1137/050625175. |
[23] |
J. Fontbona, H. Guérin and F. Malrieu, Quantitative estimates for the long time behavior of an ergodic variant of the telegraph process, Adv. App. Probab., 44 (2012), 907-1200.doi: 10.1239/aap/1354716586. |
[24] |
S. Gadat and L. Miclo, Spectral decompositions and $\mathbbL^2$-operator norms of toy hypocoercive semi-groups, Name of the Journal, 6 (2013), 317-372.doi: 10.3934/krm.2013.6.317. |
[25] |
S. Gadat and F. Panloup, Long time behaviour and stationary regime of memory gradient diffusions, Annales de l'Institut Henri Poincaré, to appear. |
[26] |
M. Grothaus and P. Stilgenbauer, Hypocoercivity for Kolmogorov backward evolution equations and applications, preprint, arXiv:1207.5447 |
[27] |
M. Grothaus, A. Klar, J. Maringer and P. Stilgenbauer, Geometry, mixing properties and hypocoercivity of a degenerate diffusion arising in technical textile industry, arXiv:1203.4502 |
[28] |
A. Guillin and F.-Y. Wang, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differential Equations, 253 (2012), 20-40.doi: 10.1016/j.jde.2012.03.014. |
[29] |
B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, 1862. Springer-Verlag, Berlin, 2005. x+209 pp. |
[30] |
F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359. |
[31] |
F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.doi: 10.1007/s00205-003-0276-3. |
[32] |
L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.doi: 10.1007/BF02392081. |
[33] |
J. Inglis, M. Neklyudov and B. Zegarliński, Ergodicity for infinite particle systems with locally conserved quantities, Infin. Dimens. Anal. Quantum Probab. Relat. Top, 15 (2012), 1250005, 28 pp.doi: 10.1142/S0219025712500051. |
[34] |
M. Ledoux, L'algèbre de Lie des gradients itérés d'un générateur markovien-développements de moyennes et entropies, Ann. Sci. École Norm. Sup. (4), 28 (1995), 435-460. |
[35] |
P.-A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis, Mat. Contemp., 19 (2000), 1-29. |
[36] |
L. Miclo and P. Monmarché, Étude spectrale minutieuse de processus moins indécis que les autres, Lecture Notes in Mathematics, 2078 (2013), 459-481.doi: 10.1007/978-3-319-00321-4_18. |
[37] |
C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.doi: 10.1088/0951-7715/19/4/011. |
[38] |
R.-M. Neal, Improving asymptotic variance of MCMC estimators: Non-reversible chains are better, arXiv:math/0407281. |
[39] |
A. Scemama, T. Lelièvre, G. Stoltz and M. Caffarel, An efficient sampling algorithm for Variational Monte Carlo, Journal of Chemical Physics, 125 (2006).doi: 10.1063/1.2354490. |
[40] |
M.-B. Tran, Convergence to equilibrium of some kinetic models, ArXiv e-prints, 255 (2013), 405-440.doi: 10.1016/j.jde.2013.04.013. |
[41] |
C. Villani, Hypocoercive diffusion operators, International Congress of Mathematicians, 3 (2006), 473-498. |
[42] |
C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., Vol. 202, American Mathematical Society, Providence, RI, 2009.doi: 10.1090/S0065-9266-09-00567-5. |