June  2014, 7(2): 381-400. doi: 10.3934/krm.2014.7.381

Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

2. 

Universität Mannheim, Lehrstuhl für Mathematik IV, 68131, Mannheim, Germany

Received  July 2013 Revised  November 2013 Published  March 2014

A Collision-Avoiding flocking particle system proposed in [8] is studied in this paper. The global wellposedness of its corresponding Vlasov-type kinetic equation is proved. As a corollary of the global stability result, the mean field limit of the particle system is obtained. Furthermore, the time-asymptotic flocking behavior of the solution to the kinetic equation is also derived. The technics used for local wellposedness and stability follow from similar ideas to those have been used in [3,14,22]. While in order to extend the local result globally, the main contribution here is to generate a series of new estimates for this Vlasov type equation, which imply that the growing of the characteristics can be controlled globally. Further estimates also show the long time flocking phenomena.
Citation: Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381
References:
[1]

M. Aldana and C. Huepe, Phase transition in self-driven many-particle systems and related non-equilibrium models: network approach,, J. Stat. Phys., 112 (2003), 135.

[2]

B. Birnir, An ODE model of the motion of pelagic fish,, J. Stat. Phys., 128 (2007), 535. doi: 10.1007/s10955-007-9292-2.

[3]

J. A Canizo, J. A Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 515. doi: 10.1142/S0218202511005131.

[4]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic cucker-smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218. doi: 10.1137/090757290.

[5]

A. Chakraborti, Distributions of money in models of market economy,, Int. J. Modern Phys., 13 (2002), 1315. doi: 10.1142/S0129183102003905.

[6]

Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. Chayes, State transitions and continuum limit for a 2D interacting, self-propelles particle system,, Physica D, 232 (2007), 33. doi: 10.1016/j.physd.2007.05.007.

[7]

I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513. doi: 10.1038/nature03236.

[8]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks,, IEEE Transactions on Automatic Control, 55 (2010), 1238. doi: 10.1109/TAC.2010.2042355.

[9]

F. Cucker and S. Smale, On the mathematics of emergence,, Japan. J. Math, 2 (2007), 197. doi: 10.1007/s11537-007-0647-x.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842.

[11]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction,, C. R. Math. Acad. Sci. Paris, 345 (2007), 555. doi: 10.1016/j.crma.2007.10.024.

[12]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turing walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989. doi: 10.1007/s10955-008-9529-8.

[13]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1193. doi: 10.1142/S0218202508003005.

[14]

R. Dobrushin, Vlasov equations,, Funct. Anal. Appl., 13 (1979), 115.

[15]

M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability and collapse,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302.

[16]

A. Dragurlescu and V. M. Yakovenko, Statistical mechanics of money,, Eur. Phys. Jou., 17 (2000), 723.

[17]

S.-Y. Ha and D. Levy, Particle, kinetic and fluid models for phototaxis,, Discrete and Continuous Dynamical Systems B, 12 (2009), 77. doi: 10.3934/dcdsb.2009.12.77.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297. doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking,, Kinetic and Related Models, 1 (2008), 415. doi: 10.3934/krm.2008.1.415.

[20]

D. Helbing, Traffic and related self-driven many particle systems,, Review of Modern Physics, 73 (2001), 1067. doi: 10.1103/RevModPhys.73.1067.

[21]

H. Levine W.-J. Rappel, Self-organization in systems of self-propelled particles,, Phys. Rev. E, 63 (2000).

[22]

H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles,, Trans. Fluid Dynamics, 18 (1977), 663.

[23]

J. K. Parrish and W.-J. Rappel, Self-orgainzed fish schools: an examination of emergent properties,, The Biological Bulletin, 202 (2002), 296.

[24]

L. Perea, G. Gomez and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations,, AIAA Journal of Guidance, 32 (2009), 527. doi: 10.2514/1.36269.

[25]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694. doi: 10.1137/060673254.

[26]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152. doi: 10.1137/S0036139903437424.

[27]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bulletin of Mathematical Biology, 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6.

[28]

T. Vicsek, Czirok, E. Beb-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226.

[29]

C. Villani, Topics in Optimal Transportation,, Graduate Studies in Mathematics, (2003). doi: 10.1007/b12016.

show all references

References:
[1]

M. Aldana and C. Huepe, Phase transition in self-driven many-particle systems and related non-equilibrium models: network approach,, J. Stat. Phys., 112 (2003), 135.

[2]

B. Birnir, An ODE model of the motion of pelagic fish,, J. Stat. Phys., 128 (2007), 535. doi: 10.1007/s10955-007-9292-2.

[3]

J. A Canizo, J. A Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 515. doi: 10.1142/S0218202511005131.

[4]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic cucker-smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218. doi: 10.1137/090757290.

[5]

A. Chakraborti, Distributions of money in models of market economy,, Int. J. Modern Phys., 13 (2002), 1315. doi: 10.1142/S0129183102003905.

[6]

Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. Chayes, State transitions and continuum limit for a 2D interacting, self-propelles particle system,, Physica D, 232 (2007), 33. doi: 10.1016/j.physd.2007.05.007.

[7]

I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513. doi: 10.1038/nature03236.

[8]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks,, IEEE Transactions on Automatic Control, 55 (2010), 1238. doi: 10.1109/TAC.2010.2042355.

[9]

F. Cucker and S. Smale, On the mathematics of emergence,, Japan. J. Math, 2 (2007), 197. doi: 10.1007/s11537-007-0647-x.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842.

[11]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction,, C. R. Math. Acad. Sci. Paris, 345 (2007), 555. doi: 10.1016/j.crma.2007.10.024.

[12]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turing walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989. doi: 10.1007/s10955-008-9529-8.

[13]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1193. doi: 10.1142/S0218202508003005.

[14]

R. Dobrushin, Vlasov equations,, Funct. Anal. Appl., 13 (1979), 115.

[15]

M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability and collapse,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302.

[16]

A. Dragurlescu and V. M. Yakovenko, Statistical mechanics of money,, Eur. Phys. Jou., 17 (2000), 723.

[17]

S.-Y. Ha and D. Levy, Particle, kinetic and fluid models for phototaxis,, Discrete and Continuous Dynamical Systems B, 12 (2009), 77. doi: 10.3934/dcdsb.2009.12.77.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297. doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking,, Kinetic and Related Models, 1 (2008), 415. doi: 10.3934/krm.2008.1.415.

[20]

D. Helbing, Traffic and related self-driven many particle systems,, Review of Modern Physics, 73 (2001), 1067. doi: 10.1103/RevModPhys.73.1067.

[21]

H. Levine W.-J. Rappel, Self-organization in systems of self-propelled particles,, Phys. Rev. E, 63 (2000).

[22]

H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles,, Trans. Fluid Dynamics, 18 (1977), 663.

[23]

J. K. Parrish and W.-J. Rappel, Self-orgainzed fish schools: an examination of emergent properties,, The Biological Bulletin, 202 (2002), 296.

[24]

L. Perea, G. Gomez and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations,, AIAA Journal of Guidance, 32 (2009), 527. doi: 10.2514/1.36269.

[25]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694. doi: 10.1137/060673254.

[26]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152. doi: 10.1137/S0036139903437424.

[27]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bulletin of Mathematical Biology, 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6.

[28]

T. Vicsek, Czirok, E. Beb-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226.

[29]

C. Villani, Topics in Optimal Transportation,, Graduate Studies in Mathematics, (2003). doi: 10.1007/b12016.

[1]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[2]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[3]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[4]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[5]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

[6]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[7]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[8]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[9]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[10]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[11]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[12]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[13]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

[14]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[15]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[16]

Zuo Quan Xu, Jia-An Yan. A note on the Monge-Kantorovich problem in the plane. Communications on Pure & Applied Analysis, 2015, 14 (2) : 517-525. doi: 10.3934/cpaa.2015.14.517

[17]

Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853

[18]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[19]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[20]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]