\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On hyperbolicity of 13-moment system

Abstract Related Papers Cited by
  • We point out that the thermodynamic equilibrium is not an interior point of the hyperbolicity region of Grad's 13-moment system. With a compact expansion of the phase density, which is more compact than Grad's expansion, we derive a modified 13-moment system. The new 13-moment system admits the thermodynamic equilibrium as an interior point of its hyperbolicity region. We deduce a concise criterion to ensure the hyperbolicity, and thus the hyperbolicity region can be quantitatively depicted.
    Mathematics Subject Classification: 82C40, 35L60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1995.

    [2]

    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, $3^{rd}$ edition, Cambridge University Press, Cambridge, 1990.

    [3]

    H. Grad, Note on $N$-dimensional Hermite polynomials, Comm. Pure Appl. Math., 2 (1949), 325-330.doi: 10.1002/cpa.3160020402.

    [4]

    H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.doi: 10.1002/cpa.3160020403.

    [5]

    S. Jin, L. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin.-E., 18 (2002), 37-62.doi: 10.1007/s102550200003.

    [6]

    S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation, J. Stat. Phys., 103 (2001), 1009-1033.doi: 10.1023/A:1010365123288.

    [7]

    G. Karniadakis, A. Beskok and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, 2005.

    [8]

    I. Müller and T. Ruggeri, Rational Extended Thermodynamics, $2^{nd}$ edition, Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, 1998.doi: 10.1007/978-1-4612-2210-1.

    [9]

    L. Mieussens and H. Struchtrup, Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number, Phys. Fluids, 16 (2004), 2797-2813.doi: 10.1063/1.1758217.

    [10]

    H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis, Phys. Fluids, 15 (2003), 2668-2680.doi: 10.1063/1.1597472.

    [11]

    H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials, Multiscale Model. Simul., 3 (2004/05), 221-243. doi: 10.1137/040603115.

    [12]

    M. Torrilhon, Regularized 13-moment-equations, in Proceedings of Rarefied Gas Dynamics: 25th International Symposium (eds. M. S. Ivanov and A. K. Rebrov), 2006, 167-172.

    [13]

    M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions, Commun. Comput. Phys., 7 (2010), 639-673.doi: 10.4208/cicp.2009.09.049.

    [14]

    Wolfram Research, Mathematica 9, http://www.wolfram.com/mathematica.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return