September  2014, 7(3): 415-432. doi: 10.3934/krm.2014.7.415

On hyperbolicity of 13-moment system

1. 

CAPT & School of Mathematical Sciences, Peking University, Yiheyuan Road 5, 100871 Beijing, China

2. 

School of Mathematical Sciences, Peking University, Yiheyuan Road 5, 100871 Beijing, China

3. 

HEDPS, CAPT & School of Mathematical Sciences, Peking University, Yiheyuan Road 5, 100871 Beijing, China

Received  July 2013 Revised  March 2014 Published  July 2014

We point out that the thermodynamic equilibrium is not an interior point of the hyperbolicity region of Grad's 13-moment system. With a compact expansion of the phase density, which is more compact than Grad's expansion, we derive a modified 13-moment system. The new 13-moment system admits the thermodynamic equilibrium as an interior point of its hyperbolicity region. We deduce a concise criterion to ensure the hyperbolicity, and thus the hyperbolicity region can be quantitatively depicted.
Citation: Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic & Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415
References:
[1]

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,, Clarendon Press, (1995).   Google Scholar

[2]

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases,, $3^{rd}$ edition, (1990).   Google Scholar

[3]

H. Grad, Note on $N$-dimensional Hermite polynomials,, Comm. Pure Appl. Math., 2 (1949), 325.  doi: 10.1002/cpa.3160020402.  Google Scholar

[4]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331.  doi: 10.1002/cpa.3160020403.  Google Scholar

[5]

S. Jin, L. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion,, Acta Math. Appl. Sin.-E., 18 (2002), 37.  doi: 10.1007/s102550200003.  Google Scholar

[6]

S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation,, J. Stat. Phys., 103 (2001), 1009.  doi: 10.1023/A:1010365123288.  Google Scholar

[7]

G. Karniadakis, A. Beskok and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation,, Springer, (2005).   Google Scholar

[8]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics,, $2^{nd}$ edition, (1998).  doi: 10.1007/978-1-4612-2210-1.  Google Scholar

[9]

L. Mieussens and H. Struchtrup, Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number,, Phys. Fluids, 16 (2004), 2797.  doi: 10.1063/1.1758217.  Google Scholar

[10]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668.  doi: 10.1063/1.1597472.  Google Scholar

[11]

H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials,, Multiscale Model. Simul., 3 (): 221.  doi: 10.1137/040603115.  Google Scholar

[12]

M. Torrilhon, Regularized 13-moment-equations,, in Proceedings of Rarefied Gas Dynamics: 25th International Symposium (eds. M. S. Ivanov and A. K. Rebrov), (2006), 167.   Google Scholar

[13]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions,, Commun. Comput. Phys., 7 (2010), 639.  doi: 10.4208/cicp.2009.09.049.  Google Scholar

[14]

Wolfram Research, Mathematica 9,, , ().   Google Scholar

show all references

References:
[1]

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,, Clarendon Press, (1995).   Google Scholar

[2]

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases,, $3^{rd}$ edition, (1990).   Google Scholar

[3]

H. Grad, Note on $N$-dimensional Hermite polynomials,, Comm. Pure Appl. Math., 2 (1949), 325.  doi: 10.1002/cpa.3160020402.  Google Scholar

[4]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331.  doi: 10.1002/cpa.3160020403.  Google Scholar

[5]

S. Jin, L. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion,, Acta Math. Appl. Sin.-E., 18 (2002), 37.  doi: 10.1007/s102550200003.  Google Scholar

[6]

S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation,, J. Stat. Phys., 103 (2001), 1009.  doi: 10.1023/A:1010365123288.  Google Scholar

[7]

G. Karniadakis, A. Beskok and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation,, Springer, (2005).   Google Scholar

[8]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics,, $2^{nd}$ edition, (1998).  doi: 10.1007/978-1-4612-2210-1.  Google Scholar

[9]

L. Mieussens and H. Struchtrup, Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number,, Phys. Fluids, 16 (2004), 2797.  doi: 10.1063/1.1758217.  Google Scholar

[10]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668.  doi: 10.1063/1.1597472.  Google Scholar

[11]

H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials,, Multiscale Model. Simul., 3 (): 221.  doi: 10.1137/040603115.  Google Scholar

[12]

M. Torrilhon, Regularized 13-moment-equations,, in Proceedings of Rarefied Gas Dynamics: 25th International Symposium (eds. M. S. Ivanov and A. K. Rebrov), (2006), 167.   Google Scholar

[13]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions,, Commun. Comput. Phys., 7 (2010), 639.  doi: 10.4208/cicp.2009.09.049.  Google Scholar

[14]

Wolfram Research, Mathematica 9,, , ().   Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[14]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]