• Previous Article
    Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation
  • KRM Home
  • This Issue
  • Next Article
    A mathematical model for value estimation with public information and herding
March  2014, 7(1): 45-56. doi: 10.3934/krm.2014.7.45

Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Department of Applied Physics, Waseda University, Tokyo, 169-8555

Received  July 2012 Revised  July 2013 Published  December 2013

This paper proves some regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion. We also prove the global existence of strong solutions of its regularized MHD-$\alpha$ system.
Citation: Jishan Fan, Tohru Ozawa. Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion. Kinetic & Related Models, 2014, 7 (1) : 45-56. doi: 10.3934/krm.2014.7.45
References:
[1]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[2]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao, D. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion,, J. Differential Equations, 254 (2013), 2661.  doi: 10.1016/j.jde.2013.01.002.  Google Scholar

[4]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[5]

E. Casella, P. Secchi and P. Trebeschi, Global classical solutions for MHD system,, J. Math. Fluid Mech., 5 (2003), 70.  doi: 10.1007/s000210300003.  Google Scholar

[6]

G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[7]

H. Engler, An alternative proof of the Brezis-Wainger inequality,, Comm. Partial Differential Equations, 14 (1989), 541.   Google Scholar

[8]

J. Fan and T. Ozawa, Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model,, Kinet. Relat. Models, 2 (2009), 293.  doi: 10.3934/krm.2009.2.293.  Google Scholar

[9]

J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms,, J. Math. Fluid Mech., 12 (2010), 306.  doi: 10.1007/s00021-008-0289-7.  Google Scholar

[10]

J. Fan and T. Ozawa, Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model,, Discrete and Continuous Dynamical Systems. Suppl., I (2011), 400.   Google Scholar

[11]

C. Fefferman and E. M. Stein, $H^p$ spaces of several variables,, Acta Math., 129 (1972), 137.  doi: 10.1007/BF02392215.  Google Scholar

[12]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier Stokes equations,, Commun. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[13]

C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de-Vries equations,, J. Amer. Math. Soc., 4 (1991), 323.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[14]

H. Kozono, Weak and classical solutions of the 2-D MHD equations,, Tohoku Math. J., 41 (1989), 471.  doi: 10.2748/tmj/1178227774.  Google Scholar

[15]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[16]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blow-up criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[17]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[18]

J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2360145.  Google Scholar

[19]

T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[20]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[21]

Y. Zhou and J. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity,, J. Math. Anal. Appl., 378 (2011), 169.  doi: 10.1016/j.jmaa.2011.01.014.  Google Scholar

show all references

References:
[1]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[2]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao, D. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion,, J. Differential Equations, 254 (2013), 2661.  doi: 10.1016/j.jde.2013.01.002.  Google Scholar

[4]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[5]

E. Casella, P. Secchi and P. Trebeschi, Global classical solutions for MHD system,, J. Math. Fluid Mech., 5 (2003), 70.  doi: 10.1007/s000210300003.  Google Scholar

[6]

G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[7]

H. Engler, An alternative proof of the Brezis-Wainger inequality,, Comm. Partial Differential Equations, 14 (1989), 541.   Google Scholar

[8]

J. Fan and T. Ozawa, Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model,, Kinet. Relat. Models, 2 (2009), 293.  doi: 10.3934/krm.2009.2.293.  Google Scholar

[9]

J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms,, J. Math. Fluid Mech., 12 (2010), 306.  doi: 10.1007/s00021-008-0289-7.  Google Scholar

[10]

J. Fan and T. Ozawa, Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model,, Discrete and Continuous Dynamical Systems. Suppl., I (2011), 400.   Google Scholar

[11]

C. Fefferman and E. M. Stein, $H^p$ spaces of several variables,, Acta Math., 129 (1972), 137.  doi: 10.1007/BF02392215.  Google Scholar

[12]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier Stokes equations,, Commun. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[13]

C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de-Vries equations,, J. Amer. Math. Soc., 4 (1991), 323.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[14]

H. Kozono, Weak and classical solutions of the 2-D MHD equations,, Tohoku Math. J., 41 (1989), 471.  doi: 10.2748/tmj/1178227774.  Google Scholar

[15]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[16]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blow-up criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[17]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[18]

J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2360145.  Google Scholar

[19]

T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[20]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[21]

Y. Zhou and J. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity,, J. Math. Anal. Appl., 378 (2011), 169.  doi: 10.1016/j.jmaa.2011.01.014.  Google Scholar

[1]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[2]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[3]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[4]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[5]

Sun-Sig Byun, Lihe Wang. $W^{1,p}$ regularity for the conormal derivative problem with parabolic BMO nonlinearity in reifenberg domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 617-637. doi: 10.3934/dcds.2008.20.617

[6]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[7]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[8]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[9]

Feng Cheng, Chao-Jiang Xu. On the Gevrey regularity of solutions to the 3D ideal MHD equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6485-6506. doi: 10.3934/dcds.2019281

[10]

Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443

[11]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[12]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[13]

Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic & Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293

[14]

Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301

[15]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[16]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[17]

Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1757-1766. doi: 10.3934/dcdsb.2018079

[18]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[19]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[20]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]