Citation: |
[1] |
E. Bernard and F. Salvarani, Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model, J. Stat. Phys., 153 (2013), 363-375.doi: 10.1007/s10955-013-0825-6. |
[2] |
E. Bernard and F. Salvarani, On the exponential decay to equilibrium of the degenerate linear Boltzmann equation, J. Funct. Anal., 265 (2013), 1934-1954.doi: 10.1016/j.jfa.2013.06.012. |
[3] |
E. Bernard and F. Salvarani, On the convergence to equilibrium for degenerate transport problems, Arch. Ration. Mech. Anal., 208 (2013), 977-984.doi: 10.1007/s00205-012-0608-2. |
[4] |
S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations, Journal of Computational Physics, 266 (2014), 22-46.doi: 10.1016/j.jcp.2014.01.050. |
[5] |
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. |
[6] |
F. De Vuyst and F. Salvarani, GPU-accelerated numerical simulations of the Knudsen gas on time-dependent domains, Comput. Phys. Comm., 184 (2013), 532-536.doi: 10.1016/j.cpc.2012.10.004. |
[7] |
L. Desvillettes and F. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858.doi: 10.1016/j.bulsci.2008.09.001. |
[8] |
S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math., 4 (1951), 129-156.doi: 10.1093/qjmam/4.2.129. |
[9] |
D. Han-Kwan and M. Léautaud, Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium, arXiv:1401.8227, (2014). |
[10] |
A. Kurganov and J. Rauch, The order of accuracy of quadrature formulae for periodic functions, in Advances in Phase Space Analysis of Partial Differential Equations, Progr. Nonlinear Differential Equations Appl., 78, Birkhäuser Boston, Inc., Boston, MA, 2009, 155-159.doi: 10.1007/978-0-8176-4861-9_9. |
[11] |
E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, John Wiley and Sons, Inc., New York, NY, 1984. |
[12] |
M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory, Series on Advances in Mathematics for Applied Sciences, 46, World Scientific Publishing Co., Inc., River Edge, NJ, 1997.doi: 10.1142/9789812819833. |
[13] |
L. Neumann and C. Mouhot, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.doi: 10.1088/0951-7715/19/4/011. |
[14] |
F. Salvarani, On the linear Boltzmann equation in evolutionary domains with absorbing boundary, J. Phys. A: Math. Theor., 46 (2013), 355501, 15 pp.doi: 10.1088/1751-8113/46/35/355501. |
[15] |
G. I. Taylor, Diffusion by continuous movements, Proc. London Math. Soc., S2-20 (1922), 196.doi: 10.1112/plms/s2-20.1.196. |
[16] |
S. Ukai, N. Point and H. Ghidouche, Sur la solution globale du problème mixte de l'équation de Boltzmann nonlinéaire, Journal de Mathématiques Pures et Appliquées. Neuvième Série, 57 (1978), 203-229. |