\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations

Abstract / Introduction Related Papers Cited by
  • This paper is devoted to the error estimate of approximate solutions for non-autonomous degenerate parabolic-hyperbolic equations, where the nonlinear convection flux, the diffusion matrix and source term depend on time $t$ explicitly. Our method is based on kinetic formulation and kinetic entropy formula. By developing the kinetic techniques, we obtain an error estimate of order $O(\sqrt{\mu})$, where $\mu$ is the artificial viscosity.
    Mathematics Subject Classification: Primary: 35B30, 35B51, 35K65; Secondary: 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations, SIAM J. Math. Anal., 36 (2004), 405-422.doi: 10.1137/S0036141003428937.

    [2]

    P. Bénilan, M. Carrillo and P. Wittbold, Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 313-327.

    [3]

    M. Bustos, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Springer, 1998.

    [4]

    J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.doi: 10.1007/s002050050152.

    [5]

    G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, Access Online via Elsevier, 1986.

    [6]

    G. Q. Chen and E. DiBenedetto, Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal., 33 (2001), 751-762.doi: 10.1137/S0036141001363597.

    [7]

    G. Q. Chen and K. H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 4 (2005), 241-266.doi: 10.3934/cpaa.2005.4.241.

    [8]

    G. Q. Chen and K. H. Karlsen, $L^1$-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations, Trans. Amer. Math. Soc., 358 (2006), 937-963.doi: 10.1090/S0002-9947-04-03689-X.

    [9]

    G. Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann. Inst. H. PoincaréAnal. Non Linéaire, 20 (2003), 645-668.doi: 10.1016/S0294-1449(02)00014-8.

    [10]

    J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105 (2006), 35-71.doi: 10.1007/s00211-006-0034-1.

    [11]

    J. Droniou, C. Imbert and J. Vovelle, An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 689-714.doi: 10.1016/j.anihpc.2003.11.001.

    [12]

    X. W. Hao, Well-posedness of the Second Order Quasilinear Anisotropic Degenerate Parabolic-Hyperbolic Equation, Ph.D thesis, Shanghai Jiao Tong University, 2010.

    [13]

    C. Imbert and J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal., 36 (2004), 214-232.doi: 10.1137/S003614100342468X.

    [14]

    K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, M2AN Math. Model. Numer. Anal., 35 (2001), 239-269.doi: 10.1051/m2an:2001114.

    [15]

    K. Kobayasi and H. Ohwa, Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle, J. Diff. Equa., 252 (2012), 137-167.doi: 10.1016/j.jde.2011.09.008.

    [16]

    S. N. Kružkov, First order quasilinear equation in several independent variables, Math. USSR. sb., 81 (1970), 228-255.

    [17]

    Y. C. Li and Q. Wang, Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations, J. Diff. Equa., 252 (2012), 4719-4741.doi: 10.1016/j.jde.2012.01.027.

    [18]

    P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), 169-191.doi: 10.1090/S0894-0347-1994-1201239-3.

    [19]

    C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Rat. Mech. Anal., 163 (2002), 87-124.doi: 10.1007/s002050200184.

    [20]

    A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 41 (2003), 2262-2293.doi: 10.1137/S0036142902406612.

    [21]

    M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal., 35 (2001), 355-387.doi: 10.1051/m2an:2001119.

    [22]

    B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002.

    [23]

    B. Perthame and P. E. Souganidis, Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws, Arch. Ration. Mech. Anal., 170 (2003), 359-370.doi: 10.1007/s00205-003-0282-5.

    [24]

    J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, 2007.

    [25]

    A. I. Vol'pert and S. I. Hugjaev, Cauchy's problem for degenerate second order quasilinear parabolic equation, Transl. Math. USSR Sb., 7 (1969), 365-387.doi: 10.1070/SM1969v007n03ABEH001095.

    [26]

    Z. G. Wang, L. Wang and Y. C. Li, Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients, Comm. Pure Appl. Anal., 12 (2013), 1163-1182.doi: 10.3934/cpaa.2013.12.1163.

    [27]

    Y. Q. Wu, Migrate Dynamic of Polluted Material in Porous Media, Shanghai Jiao Tong University Press, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return