Advanced Search
Article Contents
Article Contents

A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations

Abstract Related Papers Cited by
  • This paper is devoted to the error estimate of approximate solutions for non-autonomous degenerate parabolic-hyperbolic equations, where the nonlinear convection flux, the diffusion matrix and source term depend on time $t$ explicitly. Our method is based on kinetic formulation and kinetic entropy formula. By developing the kinetic techniques, we obtain an error estimate of order $O(\sqrt{\mu})$, where $\mu$ is the artificial viscosity.
    Mathematics Subject Classification: Primary: 35B30, 35B51, 35K65; Secondary: 35B35.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations, SIAM J. Math. Anal., 36 (2004), 405-422.doi: 10.1137/S0036141003428937.


    P. Bénilan, M. Carrillo and P. Wittbold, Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 313-327.


    M. Bustos, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Springer, 1998.


    J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.doi: 10.1007/s002050050152.


    G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, Access Online via Elsevier, 1986.


    G. Q. Chen and E. DiBenedetto, Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal., 33 (2001), 751-762.doi: 10.1137/S0036141001363597.


    G. Q. Chen and K. H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 4 (2005), 241-266.doi: 10.3934/cpaa.2005.4.241.


    G. Q. Chen and K. H. Karlsen, $L^1$-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations, Trans. Amer. Math. Soc., 358 (2006), 937-963.doi: 10.1090/S0002-9947-04-03689-X.


    G. Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann. Inst. H. PoincaréAnal. Non Linéaire, 20 (2003), 645-668.doi: 10.1016/S0294-1449(02)00014-8.


    J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105 (2006), 35-71.doi: 10.1007/s00211-006-0034-1.


    J. Droniou, C. Imbert and J. Vovelle, An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 689-714.doi: 10.1016/j.anihpc.2003.11.001.


    X. W. Hao, Well-posedness of the Second Order Quasilinear Anisotropic Degenerate Parabolic-Hyperbolic Equation, Ph.D thesis, Shanghai Jiao Tong University, 2010.


    C. Imbert and J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal., 36 (2004), 214-232.doi: 10.1137/S003614100342468X.


    K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, M2AN Math. Model. Numer. Anal., 35 (2001), 239-269.doi: 10.1051/m2an:2001114.


    K. Kobayasi and H. Ohwa, Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle, J. Diff. Equa., 252 (2012), 137-167.doi: 10.1016/j.jde.2011.09.008.


    S. N. Kružkov, First order quasilinear equation in several independent variables, Math. USSR. sb., 81 (1970), 228-255.


    Y. C. Li and Q. Wang, Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations, J. Diff. Equa., 252 (2012), 4719-4741.doi: 10.1016/j.jde.2012.01.027.


    P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), 169-191.doi: 10.1090/S0894-0347-1994-1201239-3.


    C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Rat. Mech. Anal., 163 (2002), 87-124.doi: 10.1007/s002050200184.


    A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 41 (2003), 2262-2293.doi: 10.1137/S0036142902406612.


    M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal., 35 (2001), 355-387.doi: 10.1051/m2an:2001119.


    B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002.


    B. Perthame and P. E. Souganidis, Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws, Arch. Ration. Mech. Anal., 170 (2003), 359-370.doi: 10.1007/s00205-003-0282-5.


    J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, 2007.


    A. I. Vol'pert and S. I. Hugjaev, Cauchy's problem for degenerate second order quasilinear parabolic equation, Transl. Math. USSR Sb., 7 (1969), 365-387.doi: 10.1070/SM1969v007n03ABEH001095.


    Z. G. Wang, L. Wang and Y. C. Li, Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients, Comm. Pure Appl. Anal., 12 (2013), 1163-1182.doi: 10.3934/cpaa.2013.12.1163.


    Y. Q. Wu, Migrate Dynamic of Polluted Material in Porous Media, Shanghai Jiao Tong University Press, 2007.

  • 加载中

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint