• Previous Article
    A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations
  • KRM Home
  • This Issue
  • Next Article
    Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations
September  2014, 7(3): 493-507. doi: 10.3934/krm.2014.7.493

Hysteretic behavior of a moment-closure approximation for FENE model

1. 

Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon, 305-811, South Korea

Received  February 2014 Revised  May 2014 Published  July 2014

We discuss hysteretic behaviors of dilute viscoelastic polymeric fluids with moment-closure approximation approach in extensional/enlongational flows. Polymeric fluids are modeled by the finite extensible nonlinear elastic (FENE) spring dumbbell model. Hysteresis is one of key features to describe FENE model. We here investigate the hysteretic behavior of FENE-D model introduced in [Y. Hyon et al., Multiscale Model. Simul., 7(2008), pp.978--1002]. The FENE-D model is established from a special equilibrium solution of the Fokker-Planck equation to catch extreme behavior of FENE model in large extensional flow rates. Since the hysteresis of FENE model can be seen during a relaxation in simple extensional flow employing the normal stress/the elongational viscosity versus the mean-square extension, we simulate FENE-D in simple extensional flows to investigate its hysteretic behavior comparing to FENE-P, FENE-L [G. Lielens et al., J. Non-Newtonian Fluid Mech., 76(1999), pp.249--279]. The FENE-P is a well-known pre-averaged approximated model, and it shows a good agreement to macroscopic induced stresses. However, FENE-P does not catch any hysteretic phenomenon. In contrast, the FENE-L shows a better hysteretic behavior than the other models to FENE, but it has a limitation for macroscopic induced stresses in large shear rates. On the other hand, FENE-D presents a good agreement to macroscopic induced stresses even in large shear rates, and moreover, it shows a hysteretic phenomenon in certain large flow rates.
Citation: YunKyong Hyon. Hysteretic behavior of a moment-closure approximation for FENE model. Kinetic & Related Models, 2014, 7 (3) : 493-507. doi: 10.3934/krm.2014.7.493
References:
[1]

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Fluids, Vol. 1, Fluid Mechanics,, John Wiley & Sons, (1977). Google Scholar

[2]

R. B. Bird, O. Hassager, R. C. Armstrong and C. F. Curtiss, Dynamics of Polymeric Fluids, Vol. 2, Kinetic Theory,, John Wiley & Sons, (1977). Google Scholar

[3]

C. Chauviere and A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation,, Computers & fluids, 33 (2004), 687. doi: 10.1016/j.compfluid.2003.02.002. Google Scholar

[4]

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics,, Clarendon Press, (1986). Google Scholar

[5]

P. S. Doyle, E. S. G. Shaqfeh, G. H. McKinley and S. H. Spiegelberg, Relaxation of dilute polymer solutions following extensional flow,, J. Non-Newtonian Fluid Mech., 76 (1998), 79. doi: 10.1016/S0377-0257(97)00113-4. Google Scholar

[6]

Q. Du, C. Liu and P. Yu, FENE Dumbbell model and its several linear and nonlinear closure approximations,, Multiscale Model. Simul., 4 (2005), 709. doi: 10.1137/040612038. Google Scholar

[7]

M. Gurtin, An Introduction to Continuum Mechanics,, Academic Press, (1981). Google Scholar

[8]

M. Herrchen and H. C. Öttinger, A detail comparison of various FENE dumbbell models,, J. Non-Newtonian Fluid Mech., 68 (1997), 17. doi: 10.1016/S0377-0257(96)01498-X. Google Scholar

[9]

Y. Hyon, Q. Du and C. Liu, An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials,, Multiscale Model. Simul., 7 (2008), 978. doi: 10.1137/070708287. Google Scholar

[10]

M. Hulsen, A. van Heel and B. van dent Brule, Simulation of viscoelatsic flow using Brownian configuration fields,, J. Non-Newtonian Fluid Mech., 70 (1997), 79. Google Scholar

[11]

B. Jourdain, C. Le Bris and T. Lelievre, On a variance reduction technique for the micro-macro simulations of polymeric fluids,, J. Non-Newtonian Fluid Mech., 122 (2004), 91. doi: 10.1016/j.jnnfm.2003.09.006. Google Scholar

[12]

B. Jourdain, T. Lelievre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: The FENE model,, J. Funct. Anal., 209 (2004), 162. doi: 10.1016/S0022-1236(03)00183-6. Google Scholar

[13]

R. Keunings, On the Peterlin approximation for finitely extensible dumbbells,, J. Non-Newtonian Fluid Mech., 68 (1997), 85. doi: 10.1016/S0377-0257(96)01497-8. Google Scholar

[14]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Springer, (1992). doi: 10.1007/978-3-662-12616-5. Google Scholar

[15]

M. Laso and H. C. Ottinger, Calculation of viscoelastic flow using molecular models: The connffessit approach,, J. Non-Newtonian Fluid Mech., 47 (1993), 1. doi: 10.1016/0377-0257(93)80042-A. Google Scholar

[16]

G. Lielens, P. Halin, I. Jaumain, R. Keunings and V. Legat, New closure approximations for the kinetic theory of finitely extensible dumbbells,, J. Non-Newtonian Fluid Mech., 76 (1998), 249. doi: 10.1016/S0377-0257(97)00121-3. Google Scholar

[17]

G. Lielens, R. Keunings and V. Legat, The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells,, J. Non-Newtonian Fluid Mech., 87 (1999), 179. doi: 10.1016/S0377-0257(99)00063-4. Google Scholar

[18]

F. H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium,, Comm. Pure Appl. Math., 60 (2007), 838. doi: 10.1002/cpa.20159. Google Scholar

[19]

H. C. Öttinger, Stochastic Processes in Polymeric Fluids, Tools and Examples for Developing Simulation Algorithms,, Springer-Verlag, (1996). doi: 10.1007/978-3-642-58290-5. Google Scholar

[20]

R. Owens and T. Phillips, Computational Rheology,, Imperial College Press, (2002). doi: 10.1142/9781860949425. Google Scholar

[21]

R. Prabhakar and J. R. Prakash, Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction,, J. Rheol., 50 (2006), 561. doi: 10.1122/1.2206715. Google Scholar

[22]

R. Sizaire, G. Lielens, I. Jaumain, R. Keunings and V. Legat, On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow,, J. Non-Newtonian Fluid Mech., 82 (1999), 233. doi: 10.1016/S0377-0257(98)00164-5. Google Scholar

[23]

H. Wang, K. Li and P. Zhang, Crucial properties of the moment closure model FENE-QE,, J. Non-Newtonian Fluid Mech., 150 (2008), 80. doi: 10.1016/j.jnnfm.2007.10.013. Google Scholar

[24]

P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids,, Multiscale Model. Simul., 3 (2005), 895. doi: 10.1137/030602794. Google Scholar

show all references

References:
[1]

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Fluids, Vol. 1, Fluid Mechanics,, John Wiley & Sons, (1977). Google Scholar

[2]

R. B. Bird, O. Hassager, R. C. Armstrong and C. F. Curtiss, Dynamics of Polymeric Fluids, Vol. 2, Kinetic Theory,, John Wiley & Sons, (1977). Google Scholar

[3]

C. Chauviere and A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation,, Computers & fluids, 33 (2004), 687. doi: 10.1016/j.compfluid.2003.02.002. Google Scholar

[4]

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics,, Clarendon Press, (1986). Google Scholar

[5]

P. S. Doyle, E. S. G. Shaqfeh, G. H. McKinley and S. H. Spiegelberg, Relaxation of dilute polymer solutions following extensional flow,, J. Non-Newtonian Fluid Mech., 76 (1998), 79. doi: 10.1016/S0377-0257(97)00113-4. Google Scholar

[6]

Q. Du, C. Liu and P. Yu, FENE Dumbbell model and its several linear and nonlinear closure approximations,, Multiscale Model. Simul., 4 (2005), 709. doi: 10.1137/040612038. Google Scholar

[7]

M. Gurtin, An Introduction to Continuum Mechanics,, Academic Press, (1981). Google Scholar

[8]

M. Herrchen and H. C. Öttinger, A detail comparison of various FENE dumbbell models,, J. Non-Newtonian Fluid Mech., 68 (1997), 17. doi: 10.1016/S0377-0257(96)01498-X. Google Scholar

[9]

Y. Hyon, Q. Du and C. Liu, An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials,, Multiscale Model. Simul., 7 (2008), 978. doi: 10.1137/070708287. Google Scholar

[10]

M. Hulsen, A. van Heel and B. van dent Brule, Simulation of viscoelatsic flow using Brownian configuration fields,, J. Non-Newtonian Fluid Mech., 70 (1997), 79. Google Scholar

[11]

B. Jourdain, C. Le Bris and T. Lelievre, On a variance reduction technique for the micro-macro simulations of polymeric fluids,, J. Non-Newtonian Fluid Mech., 122 (2004), 91. doi: 10.1016/j.jnnfm.2003.09.006. Google Scholar

[12]

B. Jourdain, T. Lelievre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: The FENE model,, J. Funct. Anal., 209 (2004), 162. doi: 10.1016/S0022-1236(03)00183-6. Google Scholar

[13]

R. Keunings, On the Peterlin approximation for finitely extensible dumbbells,, J. Non-Newtonian Fluid Mech., 68 (1997), 85. doi: 10.1016/S0377-0257(96)01497-8. Google Scholar

[14]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Springer, (1992). doi: 10.1007/978-3-662-12616-5. Google Scholar

[15]

M. Laso and H. C. Ottinger, Calculation of viscoelastic flow using molecular models: The connffessit approach,, J. Non-Newtonian Fluid Mech., 47 (1993), 1. doi: 10.1016/0377-0257(93)80042-A. Google Scholar

[16]

G. Lielens, P. Halin, I. Jaumain, R. Keunings and V. Legat, New closure approximations for the kinetic theory of finitely extensible dumbbells,, J. Non-Newtonian Fluid Mech., 76 (1998), 249. doi: 10.1016/S0377-0257(97)00121-3. Google Scholar

[17]

G. Lielens, R. Keunings and V. Legat, The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells,, J. Non-Newtonian Fluid Mech., 87 (1999), 179. doi: 10.1016/S0377-0257(99)00063-4. Google Scholar

[18]

F. H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium,, Comm. Pure Appl. Math., 60 (2007), 838. doi: 10.1002/cpa.20159. Google Scholar

[19]

H. C. Öttinger, Stochastic Processes in Polymeric Fluids, Tools and Examples for Developing Simulation Algorithms,, Springer-Verlag, (1996). doi: 10.1007/978-3-642-58290-5. Google Scholar

[20]

R. Owens and T. Phillips, Computational Rheology,, Imperial College Press, (2002). doi: 10.1142/9781860949425. Google Scholar

[21]

R. Prabhakar and J. R. Prakash, Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction,, J. Rheol., 50 (2006), 561. doi: 10.1122/1.2206715. Google Scholar

[22]

R. Sizaire, G. Lielens, I. Jaumain, R. Keunings and V. Legat, On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow,, J. Non-Newtonian Fluid Mech., 82 (1999), 233. doi: 10.1016/S0377-0257(98)00164-5. Google Scholar

[23]

H. Wang, K. Li and P. Zhang, Crucial properties of the moment closure model FENE-QE,, J. Non-Newtonian Fluid Mech., 150 (2008), 80. doi: 10.1016/j.jnnfm.2007.10.013. Google Scholar

[24]

P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids,, Multiscale Model. Simul., 3 (2005), 895. doi: 10.1137/030602794. Google Scholar

[1]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[4]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[5]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[6]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[7]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[8]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[9]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[10]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[11]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[12]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[13]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[14]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[15]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[16]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[17]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[18]

Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543

[19]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[20]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]