• Previous Article
    Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations
  • KRM Home
  • This Issue
  • Next Article
    A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations
September  2014, 7(3): 493-507. doi: 10.3934/krm.2014.7.493

Hysteretic behavior of a moment-closure approximation for FENE model

1. 

Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon, 305-811, South Korea

Received  February 2014 Revised  May 2014 Published  July 2014

We discuss hysteretic behaviors of dilute viscoelastic polymeric fluids with moment-closure approximation approach in extensional/enlongational flows. Polymeric fluids are modeled by the finite extensible nonlinear elastic (FENE) spring dumbbell model. Hysteresis is one of key features to describe FENE model. We here investigate the hysteretic behavior of FENE-D model introduced in [Y. Hyon et al., Multiscale Model. Simul., 7(2008), pp.978--1002]. The FENE-D model is established from a special equilibrium solution of the Fokker-Planck equation to catch extreme behavior of FENE model in large extensional flow rates. Since the hysteresis of FENE model can be seen during a relaxation in simple extensional flow employing the normal stress/the elongational viscosity versus the mean-square extension, we simulate FENE-D in simple extensional flows to investigate its hysteretic behavior comparing to FENE-P, FENE-L [G. Lielens et al., J. Non-Newtonian Fluid Mech., 76(1999), pp.249--279]. The FENE-P is a well-known pre-averaged approximated model, and it shows a good agreement to macroscopic induced stresses. However, FENE-P does not catch any hysteretic phenomenon. In contrast, the FENE-L shows a better hysteretic behavior than the other models to FENE, but it has a limitation for macroscopic induced stresses in large shear rates. On the other hand, FENE-D presents a good agreement to macroscopic induced stresses even in large shear rates, and moreover, it shows a hysteretic phenomenon in certain large flow rates.
Citation: YunKyong Hyon. Hysteretic behavior of a moment-closure approximation for FENE model. Kinetic and Related Models, 2014, 7 (3) : 493-507. doi: 10.3934/krm.2014.7.493
References:
[1]

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Fluids, Vol. 1, Fluid Mechanics, John Wiley & Sons, New York, 1977.

[2]

R. B. Bird, O. Hassager, R. C. Armstrong and C. F. Curtiss, Dynamics of Polymeric Fluids, Vol. 2, Kinetic Theory, John Wiley & Sons, New York, 1977.

[3]

C. Chauviere and A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation, Computers & fluids, 33 (2004), 687-696. doi: 10.1016/j.compfluid.2003.02.002.

[4]

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, UK, 1986.

[5]

P. S. Doyle, E. S. G. Shaqfeh, G. H. McKinley and S. H. Spiegelberg, Relaxation of dilute polymer solutions following extensional flow, J. Non-Newtonian Fluid Mech., 76 (1998), 79-110. doi: 10.1016/S0377-0257(97)00113-4.

[6]

Q. Du, C. Liu and P. Yu, FENE Dumbbell model and its several linear and nonlinear closure approximations, Multiscale Model. Simul., 4 (2005), 709-731. doi: 10.1137/040612038.

[7]

M. Gurtin, An Introduction to Continuum Mechanics, Academic Press, New York, 1981.

[8]

M. Herrchen and H. C. Öttinger, A detail comparison of various FENE dumbbell models, J. Non-Newtonian Fluid Mech., 68 (1997), 17-42. doi: 10.1016/S0377-0257(96)01498-X.

[9]

Y. Hyon, Q. Du and C. Liu, An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials, Multiscale Model. Simul., 7 (2008), 978-1002. doi: 10.1137/070708287.

[10]

M. Hulsen, A. van Heel and B. van dent Brule, Simulation of viscoelatsic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech., 70 (1997), 79-101.

[11]

B. Jourdain, C. Le Bris and T. Lelievre, On a variance reduction technique for the micro-macro simulations of polymeric fluids, J. Non-Newtonian Fluid Mech., 122 (2004), 91-106. doi: 10.1016/j.jnnfm.2003.09.006.

[12]

B. Jourdain, T. Lelievre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: The FENE model, J. Funct. Anal., 209 (2004), 162-193. doi: 10.1016/S0022-1236(03)00183-6.

[13]

R. Keunings, On the Peterlin approximation for finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., 68 (1997), 85-100. doi: 10.1016/S0377-0257(96)01497-8.

[14]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.

[15]

M. Laso and H. C. Ottinger, Calculation of viscoelastic flow using molecular models: The connffessit approach, J. Non-Newtonian Fluid Mech., 47 (1993), 1-20. doi: 10.1016/0377-0257(93)80042-A.

[16]

G. Lielens, P. Halin, I. Jaumain, R. Keunings and V. Legat, New closure approximations for the kinetic theory of finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., 76 (1998), 249-279. doi: 10.1016/S0377-0257(97)00121-3.

[17]

G. Lielens, R. Keunings and V. Legat, The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., 87 (1999), 179-196. doi: 10.1016/S0377-0257(99)00063-4.

[18]

F. H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866. doi: 10.1002/cpa.20159.

[19]

H. C. Öttinger, Stochastic Processes in Polymeric Fluids, Tools and Examples for Developing Simulation Algorithms, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-58290-5.

[20]

R. Owens and T. Phillips, Computational Rheology, Imperial College Press, London, 2002. doi: 10.1142/9781860949425.

[21]

R. Prabhakar and J. R. Prakash, Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction, J. Rheol., 50 (2006), 561-593. doi: 10.1122/1.2206715.

[22]

R. Sizaire, G. Lielens, I. Jaumain, R. Keunings and V. Legat, On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow, J. Non-Newtonian Fluid Mech., 82 (1999), 233-253. doi: 10.1016/S0377-0257(98)00164-5.

[23]

H. Wang, K. Li and P. Zhang, Crucial properties of the moment closure model FENE-QE, J. Non-Newtonian Fluid Mech., 150 (2008), 80-92. doi: 10.1016/j.jnnfm.2007.10.013.

[24]

P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids, Multiscale Model. Simul., 3 (2005), 895-917. doi: 10.1137/030602794.

show all references

References:
[1]

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Fluids, Vol. 1, Fluid Mechanics, John Wiley & Sons, New York, 1977.

[2]

R. B. Bird, O. Hassager, R. C. Armstrong and C. F. Curtiss, Dynamics of Polymeric Fluids, Vol. 2, Kinetic Theory, John Wiley & Sons, New York, 1977.

[3]

C. Chauviere and A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation, Computers & fluids, 33 (2004), 687-696. doi: 10.1016/j.compfluid.2003.02.002.

[4]

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, UK, 1986.

[5]

P. S. Doyle, E. S. G. Shaqfeh, G. H. McKinley and S. H. Spiegelberg, Relaxation of dilute polymer solutions following extensional flow, J. Non-Newtonian Fluid Mech., 76 (1998), 79-110. doi: 10.1016/S0377-0257(97)00113-4.

[6]

Q. Du, C. Liu and P. Yu, FENE Dumbbell model and its several linear and nonlinear closure approximations, Multiscale Model. Simul., 4 (2005), 709-731. doi: 10.1137/040612038.

[7]

M. Gurtin, An Introduction to Continuum Mechanics, Academic Press, New York, 1981.

[8]

M. Herrchen and H. C. Öttinger, A detail comparison of various FENE dumbbell models, J. Non-Newtonian Fluid Mech., 68 (1997), 17-42. doi: 10.1016/S0377-0257(96)01498-X.

[9]

Y. Hyon, Q. Du and C. Liu, An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials, Multiscale Model. Simul., 7 (2008), 978-1002. doi: 10.1137/070708287.

[10]

M. Hulsen, A. van Heel and B. van dent Brule, Simulation of viscoelatsic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech., 70 (1997), 79-101.

[11]

B. Jourdain, C. Le Bris and T. Lelievre, On a variance reduction technique for the micro-macro simulations of polymeric fluids, J. Non-Newtonian Fluid Mech., 122 (2004), 91-106. doi: 10.1016/j.jnnfm.2003.09.006.

[12]

B. Jourdain, T. Lelievre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: The FENE model, J. Funct. Anal., 209 (2004), 162-193. doi: 10.1016/S0022-1236(03)00183-6.

[13]

R. Keunings, On the Peterlin approximation for finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., 68 (1997), 85-100. doi: 10.1016/S0377-0257(96)01497-8.

[14]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.

[15]

M. Laso and H. C. Ottinger, Calculation of viscoelastic flow using molecular models: The connffessit approach, J. Non-Newtonian Fluid Mech., 47 (1993), 1-20. doi: 10.1016/0377-0257(93)80042-A.

[16]

G. Lielens, P. Halin, I. Jaumain, R. Keunings and V. Legat, New closure approximations for the kinetic theory of finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., 76 (1998), 249-279. doi: 10.1016/S0377-0257(97)00121-3.

[17]

G. Lielens, R. Keunings and V. Legat, The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., 87 (1999), 179-196. doi: 10.1016/S0377-0257(99)00063-4.

[18]

F. H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866. doi: 10.1002/cpa.20159.

[19]

H. C. Öttinger, Stochastic Processes in Polymeric Fluids, Tools and Examples for Developing Simulation Algorithms, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-58290-5.

[20]

R. Owens and T. Phillips, Computational Rheology, Imperial College Press, London, 2002. doi: 10.1142/9781860949425.

[21]

R. Prabhakar and J. R. Prakash, Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction, J. Rheol., 50 (2006), 561-593. doi: 10.1122/1.2206715.

[22]

R. Sizaire, G. Lielens, I. Jaumain, R. Keunings and V. Legat, On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow, J. Non-Newtonian Fluid Mech., 82 (1999), 233-253. doi: 10.1016/S0377-0257(98)00164-5.

[23]

H. Wang, K. Li and P. Zhang, Crucial properties of the moment closure model FENE-QE, J. Non-Newtonian Fluid Mech., 150 (2008), 80-92. doi: 10.1016/j.jnnfm.2007.10.013.

[24]

P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids, Multiscale Model. Simul., 3 (2005), 895-917. doi: 10.1137/030602794.

[1]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic and Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[2]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[3]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[4]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[5]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[6]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[7]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic and Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[8]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[9]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[10]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[11]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[12]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[13]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[14]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[15]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[16]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[17]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[18]

Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022009

[19]

Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543

[20]

Yuan Gao, Guangzhen Jin, Jian-Guo Liu. Inbetweening auto-animation via Fokker-Planck dynamics and thresholding. Inverse Problems and Imaging, 2021, 15 (5) : 843-864. doi: 10.3934/ipi.2021016

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]