September  2014, 7(3): 551-590. doi: 10.3934/krm.2014.7.551

One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received  May 2014 Revised  May 2014 Published  July 2014

The classical one-species Vlasov-Poisson-Landau system describes dynamics of electrons interacting with its self-consistent electrostatic field as well as its grazing collisions modeled by the famous Landau (Fokker-Planck) collision kernel. We show in this manuscript that the Cauchy problem for the one-species Vlasov-Poisson-Landau system which includes the Coulomb potential admits a unique global solution near a given global Maxwellian in the whole space $\mathbb{R}^3_x$ provided that the initial perturbation satisfies certain regularity and smallness conditions. Compared with that of [12], which, to the best of our knowledge, is the only result concerning the one-species Vlasov-Poisson-Landau system available up to now, we do not ask the initial perturbation to satisfy the neutral condition and the minimal regularity assumption we imposed on the initial perturbation is also weaker.
Citation: Yuanjie Lei, Linjie Xiong, Huijiang Zhao. One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space. Kinetic and Related Models, 2014, 7 (3) : 551-590. doi: 10.3934/krm.2014.7.551
References:
[1]

R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New York-London, 1975.

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246.

[3]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.

[4]

A. A. Arsenev and O. E. Buryak, On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation, Math. USSR. Sbornik, 69 (1991), 465-478.

[5]

P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Ration. Mech. Anal., 138 (1997), 137-167. doi: 10.1007/s002050050038.

[6]

R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45. doi: 10.1007/s00220-013-1807-x.

[7]

R.-J. Duan, S. Ukai, T. Yang and H.-J. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236. doi: 10.1007/s00220-007-0366-4.

[8]

R.-J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[9]

R.-J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure. Appl. Math., 64 (2011), 1497-1546. doi: 10.1002/cpa.20381.

[10]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386. doi: 10.1016/j.jde.2012.03.012.

[11]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Mathematical Models and Methods in Applied Sciences, 23 (2013), 979-1028. doi: 10.1142/S0218202513500012.

[12]

R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system, preprint, arXiv:1112.3261, 2011.

[13]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.

[14]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[15]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094. doi: 10.1512/iumj.2004.53.2574.

[16]

Y. Guo, The Vlasov-Poisson-Laudau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812. doi: 10.1090/S0894-0347-2011-00722-4.

[17]

Y. Guo and Y.-J. Wang, Decay of dissipative equation and negative sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208. doi: 10.1080/03605302.2012.696296.

[18]

C. He and Y.-J. Lei, Besov spaces and one-species Vlasov-Poisson-Landau system in the whole space, preprint, 2014.

[19]

F. Hilton, Collisional transport in plasma, in Handbook of Plasma Physics, Volume I: Basic Plasma Physics I (eds. M. N. Rosenbluth and R. Z. Sagdeev), North-Holland Publishing Company, 1983, pp. 147.

[20]

N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, 1973.

[21]

M. S. Elias, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[22]

R. M. Strain, Optimal time decay of the non cut-off Boltzmann equation in the whole space, Kinetic and Related Models, 5 (2012), 583-613. doi: 10.3934/krm.2012.5.583.

[23]

R. M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320. doi: 10.1007/s00220-004-1151-2.

[24]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[25]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.

[26]

R. M. Strain and K.-Y. Zhu, The Vlasov-Poisson-Landau system in $\mathbbR^3_x$, Arch. Ration. Mech. Anal., 210 (2013), 615-671. doi: 10.1007/s00205-013-0658-0.

[27]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Diff. Eq., 1 (1996), 793-816.

[28]

C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, I, North-Holland, Amsterdam, 2002, 71-305. doi: 10.1016/S1874-5792(02)80004-0.

[29]

Y.-J. Wang, Golobal solution and time decay of the Vlasov-Poisson-Landau System in $\mathbbR^3_x$, SIAM J. Math. Anal., 44 (2012), 3281-3323. doi: 10.1137/120879129.

[30]

Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Posson-Boltzmann system with angular cutoff for soft potential, J. Differential Equations, 255 (2013), 1196-1232. doi: 10.1016/j.jde.2013.05.005.

[31]

Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials, Science China Mathematics, 57 (2014), 515-540. doi: 10.1007/s11425-013-4712-z.

show all references

References:
[1]

R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New York-London, 1975.

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246.

[3]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.

[4]

A. A. Arsenev and O. E. Buryak, On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation, Math. USSR. Sbornik, 69 (1991), 465-478.

[5]

P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Ration. Mech. Anal., 138 (1997), 137-167. doi: 10.1007/s002050050038.

[6]

R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45. doi: 10.1007/s00220-013-1807-x.

[7]

R.-J. Duan, S. Ukai, T. Yang and H.-J. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236. doi: 10.1007/s00220-007-0366-4.

[8]

R.-J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[9]

R.-J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure. Appl. Math., 64 (2011), 1497-1546. doi: 10.1002/cpa.20381.

[10]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386. doi: 10.1016/j.jde.2012.03.012.

[11]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Mathematical Models and Methods in Applied Sciences, 23 (2013), 979-1028. doi: 10.1142/S0218202513500012.

[12]

R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system, preprint, arXiv:1112.3261, 2011.

[13]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.

[14]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[15]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094. doi: 10.1512/iumj.2004.53.2574.

[16]

Y. Guo, The Vlasov-Poisson-Laudau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812. doi: 10.1090/S0894-0347-2011-00722-4.

[17]

Y. Guo and Y.-J. Wang, Decay of dissipative equation and negative sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208. doi: 10.1080/03605302.2012.696296.

[18]

C. He and Y.-J. Lei, Besov spaces and one-species Vlasov-Poisson-Landau system in the whole space, preprint, 2014.

[19]

F. Hilton, Collisional transport in plasma, in Handbook of Plasma Physics, Volume I: Basic Plasma Physics I (eds. M. N. Rosenbluth and R. Z. Sagdeev), North-Holland Publishing Company, 1983, pp. 147.

[20]

N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, 1973.

[21]

M. S. Elias, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[22]

R. M. Strain, Optimal time decay of the non cut-off Boltzmann equation in the whole space, Kinetic and Related Models, 5 (2012), 583-613. doi: 10.3934/krm.2012.5.583.

[23]

R. M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320. doi: 10.1007/s00220-004-1151-2.

[24]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[25]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.

[26]

R. M. Strain and K.-Y. Zhu, The Vlasov-Poisson-Landau system in $\mathbbR^3_x$, Arch. Ration. Mech. Anal., 210 (2013), 615-671. doi: 10.1007/s00205-013-0658-0.

[27]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Diff. Eq., 1 (1996), 793-816.

[28]

C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, I, North-Holland, Amsterdam, 2002, 71-305. doi: 10.1016/S1874-5792(02)80004-0.

[29]

Y.-J. Wang, Golobal solution and time decay of the Vlasov-Poisson-Landau System in $\mathbbR^3_x$, SIAM J. Math. Anal., 44 (2012), 3281-3323. doi: 10.1137/120879129.

[30]

Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Posson-Boltzmann system with angular cutoff for soft potential, J. Differential Equations, 255 (2013), 1196-1232. doi: 10.1016/j.jde.2013.05.005.

[31]

Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials, Science China Mathematics, 57 (2014), 515-540. doi: 10.1007/s11425-013-4712-z.

[1]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[2]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic and Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[3]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021

[4]

Alexander Bobylev, Irina Potapenko. On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022020

[5]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[6]

Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022010

[7]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[8]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[9]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4347-4386. doi: 10.3934/dcdsb.2021231

[10]

Xuecheng Wang. Decay estimates for the $ 3D $ relativistic and non-relativistic Vlasov-Poisson systems. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022019

[11]

Irene M. Gamba, Maria Pia Gualdani, Christof Sparber. A note on the time decay of solutions for the linearized Wigner-Poisson system. Kinetic and Related Models, 2009, 2 (1) : 181-189. doi: 10.3934/krm.2009.2.181

[12]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043

[13]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[14]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient. Conference Publications, 2011, 2011 (Special) : 351-361. doi: 10.3934/proc.2011.2011.351

[15]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[16]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[17]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[18]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[19]

Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055

[20]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]