March  2014, 7(1): 57-77. doi: 10.3934/krm.2014.7.57

Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation

1. 

Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China

2. 

Institute of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing, 100190, China

Received  September 2013 Revised  October 2013 Published  December 2013

The inviscid limit behavior of solution is considered for the multi-dimensional derivative complex Ginzburg-Landau(DCGL) equation. For small initial data, it is proved that for some $T>0$, solution of the DCGL equation converges to the solution of the derivative nonlinear Schrödinger (DNLS) equation in natural space $C([0,T]; H^s)(s\geq \frac{n}{2})$ if some coefficients tend to zero.
Citation: Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57
References:
[1]

J.Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation,, Geom. Funct. Anal., 3 (1993), 107.

[2]

H. R. Brand and R. J. Deissler, Interaction of localized solutions for subcritical bifurcations,, Phys. Rev. Lett., 63 (1989), 2801.

[3]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,, Rev. Mod. Phys., 65 (1993), 851. doi: 10.1103/RevModPhys.65.851.

[4]

R. J. Deissler and H. R. Brand, Generation of counterpropagating nonlinear interacting traveling waves by localized noise,, Phys. Lett. A, 130 (1988), 293. doi: 10.1016/0375-9601(88)90613-5.

[5]

A. Doelman and W. Eckhaus, Periodic and quasi-periodic solutions of degenerate modulation equations,, Phys. D, 53 (1991), 249. doi: 10.1016/0167-2789(91)90065-H.

[6]

J. Q. Duan and P. Holmes, On the Cauchy problem of a generalized Ginzburg-Landau equation,, Nonlinear Anal., 22 (1994), 1033. doi: 10.1016/0362-546X(94)90065-5.

[7]

H. G. Feichtinger, Modulation spaces on locally compact Abelian group,, Proc. Internat. Conf. on Wavelet and Applications, (2003), 99.

[8]

H. J. Gao and J. Q. Duan, On the initial-value problem for the generalized two-dimensional Ginzburg-Landau equation,, J. Math. Anal. Appl., 216 (1997), 536. doi: 10.1006/jmaa.1997.5682.

[9]

L. Han, B. Wang and B. Guo, Inviscid limit for the derivative Ginzburg-Landau equation with small data in higher spatial dimensions,, Print, ().

[10]

Z. H. Huo and Y. L. Jia, Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg-Landau equation,, J. Math. Pures Appl., 92 (2009), 18. doi: 10.1016/j.matpur.2009.04.003.

[11]

Z. H. Huo and Y. L. Jia, Global well-posedness for the generalized 2D Ginzburg-Landau equation,, J. Differ. Eqns., 247 (2009), 260. doi: 10.1016/j.jde.2009.03.015.

[12]

A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces,, J. Amer. Math. Soc., 20 (2007), 753. doi: 10.1090/S0894-0347-06-00551-0.

[13]

Y. L. Jia, Inviscid limit behavior of generalized 1-D Ginzburg-Landau,, submitted., ().

[14]

C. E. Kenig, G. Ponce, C. Rolvent and L. Vega, The genreal quasilinear untrahyperbolic Schrodinger equation,, Advances in Mathematics, 206 (2006), 402. doi: 10.1016/j.aim.2005.09.005.

[15]

C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255.

[16]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527. doi: 10.1002/cpa.3160460405.

[17]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7.

[18]

C. E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations,, Invent. Math., 134 (1998), 489. doi: 10.1007/s002220050272.

[19]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrodinger equations,, Invent. Math., 158 (2004), 343. doi: 10.1007/s00222-004-0373-4.

[20]

Y. S. Li and B. L. Guo, Global existence of solutions to the derivative 2D Ginzburg-Landau equation,, J. Math. Anal. Appl., 249 (2000), 412. doi: 10.1006/jmaa.2000.6880.

[21]

T. Ozawa and J. Zhai, Global existence of small classical solutions to nonlinear Schröinger equationsm,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 303. doi: 10.1016/j.anihpc.2006.11.010.

[22]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity,, Adv. Diff. Eq., 4 (1999), 561.

[23]

H. Takaoka, Global well-posedness for Schrödinger equation with derivative in a nonlinear term and data in low-order Sobolev Spaces,, Elec. J. Diff. Eq., 2001 ().

[24]

T. Tao, Multilinear weighted convolution of $ L^2 $ functions, and applications to nonlinear dispersive equation,, Amer.J. Math., 123 (2001), 839. doi: 10.1353/ajm.2001.0035.

[25]

B. X. Wang, The Cauchy problem for critical and subcritial semilinear parabolic equations in $L^r$ (II). Initial data in critial Sobolev spaces $H^{-s,r}$,, Nonlinear Anal., 52 (2003), 851. doi: 10.1016/S0362-546X(02)00136-0.

[26]

B. X. Wang, B. L. Guo and L. F. Zhao, The global well-posedness and spatial decay of solutions for the derivative complex Ginzburg-Landau equation in $H^1$,, Nonlinear Anal., 57 (2004), 1059. doi: 10.1016/j.na.2004.03.032.

[27]

B. Wang and Y. Wang, The inviscid limit of the derivative complex Ginzburg-Landau equation,, J. Math. Pures Appl., 83 (2004), 477. doi: 10.1016/j.matpur.2003.11.002.

show all references

References:
[1]

J.Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation,, Geom. Funct. Anal., 3 (1993), 107.

[2]

H. R. Brand and R. J. Deissler, Interaction of localized solutions for subcritical bifurcations,, Phys. Rev. Lett., 63 (1989), 2801.

[3]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,, Rev. Mod. Phys., 65 (1993), 851. doi: 10.1103/RevModPhys.65.851.

[4]

R. J. Deissler and H. R. Brand, Generation of counterpropagating nonlinear interacting traveling waves by localized noise,, Phys. Lett. A, 130 (1988), 293. doi: 10.1016/0375-9601(88)90613-5.

[5]

A. Doelman and W. Eckhaus, Periodic and quasi-periodic solutions of degenerate modulation equations,, Phys. D, 53 (1991), 249. doi: 10.1016/0167-2789(91)90065-H.

[6]

J. Q. Duan and P. Holmes, On the Cauchy problem of a generalized Ginzburg-Landau equation,, Nonlinear Anal., 22 (1994), 1033. doi: 10.1016/0362-546X(94)90065-5.

[7]

H. G. Feichtinger, Modulation spaces on locally compact Abelian group,, Proc. Internat. Conf. on Wavelet and Applications, (2003), 99.

[8]

H. J. Gao and J. Q. Duan, On the initial-value problem for the generalized two-dimensional Ginzburg-Landau equation,, J. Math. Anal. Appl., 216 (1997), 536. doi: 10.1006/jmaa.1997.5682.

[9]

L. Han, B. Wang and B. Guo, Inviscid limit for the derivative Ginzburg-Landau equation with small data in higher spatial dimensions,, Print, ().

[10]

Z. H. Huo and Y. L. Jia, Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg-Landau equation,, J. Math. Pures Appl., 92 (2009), 18. doi: 10.1016/j.matpur.2009.04.003.

[11]

Z. H. Huo and Y. L. Jia, Global well-posedness for the generalized 2D Ginzburg-Landau equation,, J. Differ. Eqns., 247 (2009), 260. doi: 10.1016/j.jde.2009.03.015.

[12]

A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces,, J. Amer. Math. Soc., 20 (2007), 753. doi: 10.1090/S0894-0347-06-00551-0.

[13]

Y. L. Jia, Inviscid limit behavior of generalized 1-D Ginzburg-Landau,, submitted., ().

[14]

C. E. Kenig, G. Ponce, C. Rolvent and L. Vega, The genreal quasilinear untrahyperbolic Schrodinger equation,, Advances in Mathematics, 206 (2006), 402. doi: 10.1016/j.aim.2005.09.005.

[15]

C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255.

[16]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527. doi: 10.1002/cpa.3160460405.

[17]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7.

[18]

C. E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations,, Invent. Math., 134 (1998), 489. doi: 10.1007/s002220050272.

[19]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrodinger equations,, Invent. Math., 158 (2004), 343. doi: 10.1007/s00222-004-0373-4.

[20]

Y. S. Li and B. L. Guo, Global existence of solutions to the derivative 2D Ginzburg-Landau equation,, J. Math. Anal. Appl., 249 (2000), 412. doi: 10.1006/jmaa.2000.6880.

[21]

T. Ozawa and J. Zhai, Global existence of small classical solutions to nonlinear Schröinger equationsm,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 303. doi: 10.1016/j.anihpc.2006.11.010.

[22]

H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity,, Adv. Diff. Eq., 4 (1999), 561.

[23]

H. Takaoka, Global well-posedness for Schrödinger equation with derivative in a nonlinear term and data in low-order Sobolev Spaces,, Elec. J. Diff. Eq., 2001 ().

[24]

T. Tao, Multilinear weighted convolution of $ L^2 $ functions, and applications to nonlinear dispersive equation,, Amer.J. Math., 123 (2001), 839. doi: 10.1353/ajm.2001.0035.

[25]

B. X. Wang, The Cauchy problem for critical and subcritial semilinear parabolic equations in $L^r$ (II). Initial data in critial Sobolev spaces $H^{-s,r}$,, Nonlinear Anal., 52 (2003), 851. doi: 10.1016/S0362-546X(02)00136-0.

[26]

B. X. Wang, B. L. Guo and L. F. Zhao, The global well-posedness and spatial decay of solutions for the derivative complex Ginzburg-Landau equation in $H^1$,, Nonlinear Anal., 57 (2004), 1059. doi: 10.1016/j.na.2004.03.032.

[27]

B. Wang and Y. Wang, The inviscid limit of the derivative complex Ginzburg-Landau equation,, J. Math. Pures Appl., 83 (2004), 477. doi: 10.1016/j.matpur.2003.11.002.

[1]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[2]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[3]

Meina Gao. Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 173-204. doi: 10.3934/dcds.2015.35.173

[4]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[5]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[6]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[7]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[8]

Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129

[9]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[12]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for the Ibragimov-Shabat equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 661-673. doi: 10.3934/dcdss.2016020

[13]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[14]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[15]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[16]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[17]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[18]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[19]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[20]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]