Advanced Search
Article Contents
Article Contents

On a regularized system of self-gravitating particles

Abstract Related Papers Cited by
  • We consider a regularized macroscopic model describing a system of self-gravitating particles. We study the existence and uniqueness of nonnegative stationary solutions and allude the differences to results obtained from classical gravitational models. The system is analyzed on a convex, bounded domain up to three spatial dimensions, subject to Neumann boundary conditions for the particle density, and Dirichlet boundary condition for the self-interacting potential. Finally, we show numerical simulations underlining our analytical results.
    Mathematics Subject Classification: Primary: 35D30, 35J57; Secondary: 76Y05.


    \begin{equation} \\ \end{equation}
  • [1]

    N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model, Z. angew. Math. Phys., 49 (1998), 251-275.doi: 10.1007/s000330050218.


    C. Bennett and R. C. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, Vol. 129, Academic Press, Boston, 1988.


    P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, Colloq. Math., 66 (1994), 319-334.


    E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.doi: 10.1007/BF02099262.


    E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, II, Comm. Math. Phys., 174 (1995), 229-260.doi: 10.1007/BF02099602.


    D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 73-93.doi: 10.1016/j.anihpc.2009.07.006.


    A. Dall'Aglio, D. Giachetti and J. -P. Puel, Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., 181 (2002), 407-426.doi: 10.1007/s102310100046.


    V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125.doi: 10.1155/S1025583499000077.


    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-642-61798-0.


    A. Jüngel and R. Pinnau, Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal, 32 (2000), 760-777.doi: 10.1137/S0036141099360269.


    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, Vol. 88, Academic Press, New York, 1980.


    J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, (French) [Some results of Višik on nonlinear elliptic problems by the methods of Minty-Browder], Bull. Soc. Math. France, 93 (1965), 97-107.


    M. Montenegro and M. Montenegro, Existence and nonexistence of solutions for quasilinear elliptic equations, J. Math. Anal. Appl., 245 (2000), 303-316.doi: 10.1006/jmaa.1999.6697.


    J. Moser, A sharp form of an inequality by N. Trudinger, Indiana. Univ. Math. J., 20 (1971), 1077-1092.


    R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal., 37 (1999), 211-245.doi: 10.1137/S0036142998341039.


    T. Suzuki, Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, Vol. 62, Birkhäuser, Boston, 2005.doi: 10.1007/0-8176-4436-9.


    O. Tse, On the effects of the Bohm potential on a macroscopic system of self-interacting particles, J. Math. Anal. Appl., 418 (2014), 796-811.doi: 10.1016/j.jmaa.2014.04.021.


    J. Winter, Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems, Phys. Rev. D, 32 (1985), 1871-1888.doi: 10.1103/PhysRevD.32.1871.

  • 加载中

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint