December  2014, 7(4): 605-619. doi: 10.3934/krm.2014.7.605

Time decay of solutions to the compressible Euler equations with damping

1. 

School of Applied Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, China

2. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005

Received  December 2013 Revised  July 2014 Published  November 2014

We consider the time decay rates of the solution to the Cauchy problem for the compressible Euler equations with damping. We prove the optimal decay rates of the solution as well as its higher-order spatial derivatives. The damping effect on the time decay estimates of the solution is studied in details.
Citation: Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605
References:
[1]

C. M. Dafermos, Can dissipation prevent the breaking of waves?, In Transactions of the Twenty-Sixth Conference of Army Mathematicians, (1981), 187. Google Scholar

[2]

R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rate for the compressible Navier-Stokes equations with potential force,, J. Differential Equations, 238 (2007), 220. doi: 10.1016/j.jde.2007.03.008. Google Scholar

[3]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force,, Math. Mod. Meth. Appl. Sci., 17 (2007), 737. doi: 10.1142/S021820250700208X. Google Scholar

[4]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, Comm. PDE., 37 (2012), 2165. doi: 10.1080/03605302.2012.696296. Google Scholar

[5]

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms,, World Scientific Publishing Co., (1997). Google Scholar

[6]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, Comm. Math. Phys., 143 (1992), 599. doi: 10.1007/BF02099268. Google Scholar

[7]

F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum,, Arch. Ration. Mech. Anal., 166 (2003), 359. doi: 10.1007/s00205-002-0234-5. Google Scholar

[8]

F. M. Huang, P. Marcati and R. H. Pan, Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum,, Arch. Ration. Mech. Anal., 176 (2005), 1. doi: 10.1007/s00205-004-0349-y. Google Scholar

[9]

F. M. Huang, R. H. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping,, Arch. Ration. Mech. Anal., 200 (2011), 665. doi: 10.1007/s00205-010-0355-1. Google Scholar

[10]

M. Jiang and C. J. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant,, J. Differential Equations, 246 (2009), 50. doi: 10.1016/j.jde.2008.03.033. Google Scholar

[11]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Rational Mech. Anal., 58 (1975), 181. doi: 10.1007/BF00280740. Google Scholar

[12]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations Of Magnetohydrodynamics,, Ph.D thesis, (1983). Google Scholar

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002). Google Scholar

[14]

A. Majda, Compressible Fluid Flow and Conservation laws in Several Space Variables,, Springer-Verlag, (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[15]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow,, J.Differential Equations, 84 (1990), 129. doi: 10.1016/0022-0396(90)90130-H. Google Scholar

[16]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J Math Kyoto Univ, 20 (1980), 67. Google Scholar

[17]

T. Nishida, Global solutions for an initial-boundary value problem of a quasilinear hyperbolic systems,, Proc. Japan Acad., 44 (1968), 642. doi: 10.3792/pja/1195521083. Google Scholar

[18]

T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics,, Publ. Math. D'Orsay, (1978), 46. Google Scholar

[19]

L. Nirenberg, On elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115. Google Scholar

[20]

T. C. Sideris, B. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping,, Comm. PDE., 28 (2003), 795. doi: 10.1081/PDE-120020497. Google Scholar

[21]

Z. Tan and G. C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^{3}$,, J. Differential Equations, 252 (2012), 1546. doi: 10.1016/j.jde.2011.09.003. Google Scholar

[22]

W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410. doi: 10.1006/jdeq.2000.3937. Google Scholar

[23]

C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping,, Sci. China Ser. A, 46 (2003), 562. doi: 10.1360/03ys9057. Google Scholar

show all references

References:
[1]

C. M. Dafermos, Can dissipation prevent the breaking of waves?, In Transactions of the Twenty-Sixth Conference of Army Mathematicians, (1981), 187. Google Scholar

[2]

R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rate for the compressible Navier-Stokes equations with potential force,, J. Differential Equations, 238 (2007), 220. doi: 10.1016/j.jde.2007.03.008. Google Scholar

[3]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force,, Math. Mod. Meth. Appl. Sci., 17 (2007), 737. doi: 10.1142/S021820250700208X. Google Scholar

[4]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, Comm. PDE., 37 (2012), 2165. doi: 10.1080/03605302.2012.696296. Google Scholar

[5]

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms,, World Scientific Publishing Co., (1997). Google Scholar

[6]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, Comm. Math. Phys., 143 (1992), 599. doi: 10.1007/BF02099268. Google Scholar

[7]

F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum,, Arch. Ration. Mech. Anal., 166 (2003), 359. doi: 10.1007/s00205-002-0234-5. Google Scholar

[8]

F. M. Huang, P. Marcati and R. H. Pan, Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum,, Arch. Ration. Mech. Anal., 176 (2005), 1. doi: 10.1007/s00205-004-0349-y. Google Scholar

[9]

F. M. Huang, R. H. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping,, Arch. Ration. Mech. Anal., 200 (2011), 665. doi: 10.1007/s00205-010-0355-1. Google Scholar

[10]

M. Jiang and C. J. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant,, J. Differential Equations, 246 (2009), 50. doi: 10.1016/j.jde.2008.03.033. Google Scholar

[11]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Rational Mech. Anal., 58 (1975), 181. doi: 10.1007/BF00280740. Google Scholar

[12]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations Of Magnetohydrodynamics,, Ph.D thesis, (1983). Google Scholar

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002). Google Scholar

[14]

A. Majda, Compressible Fluid Flow and Conservation laws in Several Space Variables,, Springer-Verlag, (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[15]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow,, J.Differential Equations, 84 (1990), 129. doi: 10.1016/0022-0396(90)90130-H. Google Scholar

[16]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J Math Kyoto Univ, 20 (1980), 67. Google Scholar

[17]

T. Nishida, Global solutions for an initial-boundary value problem of a quasilinear hyperbolic systems,, Proc. Japan Acad., 44 (1968), 642. doi: 10.3792/pja/1195521083. Google Scholar

[18]

T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics,, Publ. Math. D'Orsay, (1978), 46. Google Scholar

[19]

L. Nirenberg, On elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115. Google Scholar

[20]

T. C. Sideris, B. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping,, Comm. PDE., 28 (2003), 795. doi: 10.1081/PDE-120020497. Google Scholar

[21]

Z. Tan and G. C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^{3}$,, J. Differential Equations, 252 (2012), 1546. doi: 10.1016/j.jde.2011.09.003. Google Scholar

[22]

W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410. doi: 10.1006/jdeq.2000.3937. Google Scholar

[23]

C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping,, Sci. China Ser. A, 46 (2003), 562. doi: 10.1360/03ys9057. Google Scholar

[1]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[2]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[3]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[4]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[5]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[6]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[7]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2019, 0 (0) : 1-15. doi: 10.3934/eect.2020009

[8]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[9]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[10]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[11]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[12]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[13]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[14]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[15]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[16]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[17]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[18]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[19]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[20]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]