December  2014, 7(4): 661-711. doi: 10.3934/krm.2014.7.661

A review of the mean field limits for Vlasov equations

1. 

CSCAMM and Dpt of Mathematics, University of Maryland, College Park, MD 20742, United States

Received  August 2014 Revised  September 2014 Published  November 2014

We review some classical and more recent results on the mean field limit and propagation of chaos for systems of many particles, leading to Vlasov or macroscopic equations.
Citation: Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic & Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661
References:
[1]

S. J. Aarseth, Gravitational N-Body Simulations,, Cambridge Monographs on Mathematical Physics. Cambridge University Press, (2003). doi: 10.1017/CBO9780511535246. Google Scholar

[2]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227. doi: 10.1007/s00222-004-0367-2. Google Scholar

[3]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields,, In Calculus of variations and nonlinear partial differential equations, (1927), 1. doi: 10.1007/978-3-540-75914-0_1. Google Scholar

[4]

H. Andréasson, M. Kunze and G. Rein, Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter,, Comm. Partial Differential Equations, 33 (2008), 656. doi: 10.1080/03605300701454883. Google Scholar

[5]

A. A. Arsen'ev, Existence in the large of a weak solution of Vlasov's system of equations,, Ž. Vyčisl. Mat. i Mat. Fiz., 15 (1975), 136. Google Scholar

[6]

R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics,, Wiley-Interscience [John Wiley & Sons], (1975). Google Scholar

[7]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in $3$ space variables with small initial data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101. Google Scholar

[8]

C. Bardos, L. Erdös, F. Golse, N. Mauser and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum n-body problem,, C. R. Math. Acad. Sci. Paris, 334 (2002), 515. doi: 10.1016/S1631-073X(02)02253-7. Google Scholar

[9]

C. Bardos, F. Golse, A. D. Gottlieb and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation,, J. Math. Pures Appl. (9), 82 (2003), 665. doi: 10.1016/S0021-7824(03)00023-0. Google Scholar

[10]

J. Barré, M. Hauray and P. E. Jabin, Stability of trajectories for N-particle dynamics with a singular potential,, Journal of Statistical Mechanics: Theory and Experiment, (2010). Google Scholar

[11]

J. Barré and P. E. Jabin, Free transport limit for $N$-particles dynamics with singular and short range potential,, J. Stat. Phys., 131 (2008), 1085. doi: 10.1007/s10955-008-9526-y. Google Scholar

[12]

J. Batt, $N$-particle approximation to the nonlinear Vlasov-Poisson system,, In Proceedings of the Third World Congress of Nonlinear Analysts, 47 (2001), 1445. doi: 10.1016/S0362-546X(01)00280-2. Google Scholar

[13]

J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions,, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411. Google Scholar

[14]

J. Bedrossian and N. Masmoudi, Asymptotic stability for the Couette flow in the 2D Euler equations,, Appl. Math. Res. Express. AMRX, (2014), 157. Google Scholar

[15]

L. Berlyand, P. Jabin and M. Potomkin, Complexity reduction in many particle systems with random initial data,, Submitted to J. Uncertainty Quantification., (). Google Scholar

[16]

A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels,, Nonlinearity, 22 (2009), 683. doi: 10.1088/0951-7715/22/3/009. Google Scholar

[17]

A. L. Bertozzi, T. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation,, Comm. Pure Appl. Math., 64 (2011), 45. doi: 10.1002/cpa.20334. Google Scholar

[18]

C. Birdsall and A. Langdon, Plasma Physics Via Computer Simulation,, Series in plasma physics. Adam Hilger, (1991). doi: 10.1887/0750301171. Google Scholar

[19]

N. N. Bogoliubov, Kinetic equations,, Journal of Experimental and Theoretical Physics (in Russian), 16 (1946), 691. Google Scholar

[20]

N. N. Bogoliubov, Kinetic equations,, Journal of Physics USSR, 10 (1946), 265. Google Scholar

[21]

E. Boissard, Problèmes D'interaction Discret-continu et Distances de Wasserstein,, PhD thesis, (2011). Google Scholar

[22]

E. Boissard, Simple bounds for convergence of empirical and occupation measures in 1-Wasserstein distance,, Electron. J. Probab., 16 (2011), 2296. doi: 10.1214/EJP.v16-958. Google Scholar

[23]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming,, Math. Models Methods Appl. Sci., 21 (2011), 2179. doi: 10.1142/S0218202511005702. Google Scholar

[24]

F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces,, Probab. Theory Related Fields, 137 (2007), 541. doi: 10.1007/s00440-006-0004-7. Google Scholar

[25]

M. Born and H. S. Green, A general kinetic theory of liquids i. the molecular distribution functions,, Proc. Roy. Soc. A, 188 (1946), 10. doi: 10.1098/rspa.1946.0093. Google Scholar

[26]

F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation,, Arch. Ration. Mech. Anal., 157 (2001), 75. doi: 10.1007/PL00004237. Google Scholar

[27]

F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system,, Arch. Ration. Mech. Anal., 170 (2003), 1. doi: 10.1007/s00205-003-0265-6. Google Scholar

[28]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory,, L. Desvillettes and B. Perthame eds, (2000). Google Scholar

[29]

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles,, Comm. Math. Phys., 56 (1977), 101. doi: 10.1007/BF01611497. Google Scholar

[30]

E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description,, Comm. Math. Phys., 143 (1992), 501. doi: 10.1007/BF02099262. Google Scholar

[31]

E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II,, Comm. Math. Phys., 174 (1995), 229. doi: 10.1007/BF02099602. Google Scholar

[32]

E. Caglioti and F. Rousset, Long time behavior of particle systems in the mean field limit,, Commun. Math. Sci., 1 (2007), 11. doi: 10.4310/CMS.2007.v5.n5.a3. Google Scholar

[33]

E. Caglioti and F. Rousset, Quasi-stationary states for particle systems in the mean-field limit,, J. Stat. Phys., 129 (2007), 241. doi: 10.1007/s10955-007-9390-1. Google Scholar

[34]

E. Caglioti and F. Rousset, Long time estimates in the mean field limit,, Arch. Ration. Mech. Anal., 190 (2008), 517. doi: 10.1007/s00205-008-0157-x. Google Scholar

[35]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$,, Commun. Math. Sci., 6 (2008), 417. doi: 10.4310/CMS.2008.v6.n2.a8. Google Scholar

[36]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85. doi: 10.3934/krm.2010.3.85. Google Scholar

[37]

J. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and wasserstein distances,, In Collective Dynamics from Bacteria to Crowds, (2014), 1. doi: 10.1007/978-3-7091-1785-9_1. Google Scholar

[38]

J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations,, Duke Math. J., 156 (2011), 229. doi: 10.1215/00127094-2010-211. Google Scholar

[39]

J. A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials,, Nonlinear Anal., 100 (2014), 122. doi: 10.1016/j.na.2014.01.010. Google Scholar

[40]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,, Springer-Verlag, (1994). doi: 10.1007/978-1-4419-8524-8. Google Scholar

[41]

T. Champion, L. De Pascale and P. Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps,, SIAM J. Math. Anal., 40 (2008), 1. doi: 10.1137/07069938X. Google Scholar

[42]

P.-H. Chavanis, Hamiltonian and Brownian systems with long-range interactions. V. Stochastic kinetic equations and theory of fluctuations,, Phys. A., 387 (2008), 5716. doi: 10.1016/j.physa.2008.06.016. Google Scholar

[43]

J.-Y. Chemin, Perfect Incompressible Fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press, (1998). Google Scholar

[44]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x. Google Scholar

[45]

G.-H. Cottet, J. Goodman and T. Y. Hou, Convergence of the grid-free point vortex method for the three-dimensional Euler equations,, SIAM J. Numer. Anal., 28 (1991), 291. doi: 10.1137/0728016. Google Scholar

[46]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow,, J. Reine Angew. Math., 616 (2008), 15. doi: 10.1515/CRELLE.2008.016. Google Scholar

[47]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842. Google Scholar

[48]

F. Cucker and S. Smale, On the mathematics of emergence,, Japan J. Math., 2 (2007), 197. doi: 10.1007/s11537-007-0647-x. Google Scholar

[49]

M. Cullen, W. Gangbo and G. Pisante, The semigeostrophic equations discretized in reference and dual variables,, Arch. Ration. Mech. Anal., 185 (2007), 341. doi: 10.1007/s00205-006-0040-6. Google Scholar

[50]

C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations,, In Handbook of differential equations: evolutionary equations. Vol. III, (2007), 277. Google Scholar

[51]

P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonlinear Sci., 23 (2013), 427. doi: 10.1007/s00332-012-9157-y. Google Scholar

[52]

P. Degond and F.-J. Mustieles, A deterministic approximation of diffusion equations using particles,, SIAM J. Sci. Statist. Comput., 11 (1990), 293. doi: 10.1137/0911018. Google Scholar

[53]

W. Dehnen, A very fast and momentum-conserving tree code,, The Astrophysical Journal, 536 (2000). Google Scholar

[54]

J.-M. Delort, Existence de nappes de tourbillon en dimension deux,, J. Amer. Math. Soc., 4 (1991), 553. doi: 10.1090/S0894-0347-1991-1102579-6. Google Scholar

[55]

L. Desvillettes, F. Golse and V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow,, J. Stat. Phys., 131 (2008), 941. doi: 10.1007/s10955-008-9521-3. Google Scholar

[56]

M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case,, J. Differential Equations, 250 (2011), 1334. doi: 10.1016/j.jde.2010.10.015. Google Scholar

[57]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729. doi: 10.1002/cpa.3160420603. Google Scholar

[58]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations,, Invent. Math, 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[59]

V. Dobrić and J. E. Yukich, Asymptotics for transportation cost in high dimensions,, J. Theoret. Probab., 8 (1995), 97. doi: 10.1007/BF02213456. Google Scholar

[60]

R. L. Dobrušin, Vlasov equations,, Funktsional. Anal. i Prilozhen., 13 (1979), 48. Google Scholar

[61]

L. Erdős, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems,, Invent. Math., 167 (2007), 515. doi: 10.1007/s00222-006-0022-1. Google Scholar

[62]

L. Erdős, B. Schlein and H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,, Ann. of Math. (2), 172 (2010), 291. doi: 10.4007/annals.2010.172.291. Google Scholar

[63]

N. Fournier and A. Guillin, On the rate of convergence in wasserstein distance of the empirical measure,, , (2014). Google Scholar

[64]

N. Fournier, M. Hauray and S. Mischler, Propagation of chaos for the 2d viscous vortex model,, J. Eur. Math. Soc., 16 (2014), 1425. doi: 10.4171/JEMS/465. Google Scholar

[65]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), (2013). Google Scholar

[66]

K. Ganguly, J. T. Lee and H. D. Victory, Jr., On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed,, SIAM J. Numer. Anal., 28 (1991), 1574. doi: 10.1137/0728080. Google Scholar

[67]

K. Ganguly and H. D. Victory, Jr., On the convergence of particle methods for multidimensional Vlasov-Poisson systems,, SIAM J. Numer. Anal., 26 (1989), 249. doi: 10.1137/0726015. Google Scholar

[68]

F. Gao, Moderate deviations and large deviations for kernel density estimators,, J. Theoret. Probab., 16 (2003), 401. doi: 10.1023/A:1023574711733. Google Scholar

[69]

I. Gasser, P.-E. Jabin and B. Perthame, Regularity and propagation of moments in some nonlinear Vlasov systems,, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 1259. doi: 10.1017/S0308210500000676. Google Scholar

[70]

J. W. Gibbs, On the Fundamental Formulae of Dynamics,, Amer. J. Math., 2 (1879), 49. doi: 10.2307/2369196. Google Scholar

[71]

J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics,, Dover publications, (1960). Google Scholar

[72]

R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996). doi: 10.1137/1.9781611971477. Google Scholar

[73]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, II,, Arch. Rational Mech. Anal., 141 (1998), 331. doi: 10.1007/s002050050079. Google Scholar

[74]

F. Golse, On the dynamics of large particle systems in the mean field limit,, , (2013). Google Scholar

[75]

F. Golse, C. Mouhot and V. Ricci, Empirical measures and Vlasov hierarchies,, Kinet. Relat. Models, 6 (2013), 919. doi: 10.3934/krm.2013.6.919. Google Scholar

[76]

J. Goodman and T. Y. Hou, New stability estimates for the $2$-D vortex method,, Comm. Pure Appl. Math., 44 (1991), 1015. doi: 10.1002/cpa.3160440813. Google Scholar

[77]

J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the $2$-D Euler equations,, Comm. Pure Appl. Math., 43 (1990), 415. doi: 10.1002/cpa.3160430305. Google Scholar

[78]

H. Grad, On the kinetic theory of rarefied gases,, Comm. on Pure and Appl. Math., 2 (1949), 331. doi: 10.1002/cpa.3160020403. Google Scholar

[79]

L. Greengard and V. Rokhlin, A fast algorithm for particle simulation,, Journal of Computational Physics, 73 (1987), 325. doi: 10.1016/0021-9991(87)90140-9. Google Scholar

[80]

L. Greengard and V. Rokhlin, Rapid evaluation of potential fields in three dimensions,, Lecture Notes in Mathematics, 1360 (1988), 121. doi: 10.1007/BFb0089775. Google Scholar

[81]

Y. N. Grigoryev, V. A. Vshivkov and M. P. Fedoruk, Numerical "Particle-in-Cell" Methods: Theory and Applications,, De Gruyter, (2002). doi: 10.1515/9783110916706. Google Scholar

[82]

O. Guéant, J.-M. Lasry, and P.-L. Lions, Mean field games and applications,, In Paris-Princeton Lectures on Mathematical Finance 2010, (2011), 205. doi: 10.1007/978-3-642-14660-2_3. Google Scholar

[83]

V. Gyrya, L. Berlyand, I. Aranson and D. A. Karpeev, A model of hydrodynamics interaction between swimming bacteria,, Bulletin of Mathematical Biology, 72 (2010), 148. doi: 10.1007/s11538-009-9442-6. Google Scholar

[84]

M. Hauray, On Liouville transport equation with force field in $BV_{loc}$,, Comm. Partial Differential Equations, 29 (2004), 207. doi: 10.1081/PDE-120028850. Google Scholar

[85]

M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations,, Math. Models Methods Appl. Sci., 19 (2009), 1357. doi: 10.1142/S0218202509003814. Google Scholar

[86]

M. Hauray, Mean field limit for the one dimensional vlasov-poisson equation,, Séminaire Laurent Schwartz, (2013). Google Scholar

[87]

M. Hauray and P.-E. Jabin, $N$-particles approximation of the Vlasov equations with singular potential,, Arch. Ration. Mech. Anal., 183 (2007), 489. doi: 10.1007/s00205-006-0021-9. Google Scholar

[88]

M. Hauray and P.-E. Jabin, Particles Approximations of Vlasov Equations with Singular Forces: Propagation of Chaos,, To appearAnn. Sci. Ec. Norm. Super., (2014). Google Scholar

[89]

M. Hauray and S. Mischler, On kac's chaos and related problems,, J. Funct. Anal., 266 (2014), 6055. doi: 10.1016/j.jfa.2014.02.030. Google Scholar

[90]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, Journal of Artifical Societies and Social Simulation (JASSS), (2002). Google Scholar

[91]

M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model,, J. Math. Biol., 35 (1996), 177. doi: 10.1007/s002850050049. Google Scholar

[92]

E. Hewitt and L. Savage, Symmetric measures on cartesian products,, Trans. Amer. Math. Soc., 80 (1955), 470. doi: 10.1090/S0002-9947-1955-0076206-8. Google Scholar

[93]

A. Honig, B. Niethammer and F. Otto, On first-order corrections to the lsw theory i: Infinite systems,, Journal of Statistical Physics, 119 (2005), 61. doi: 10.1007/s10955-004-2057-2. Google Scholar

[94]

A. Honig, B. Niethammer and F. Otto, On first-order corrections to the lsw theory ii: Finite systems,, Journal of Statistical Physics, 119 (2005), 123. doi: 10.1007/s10955-004-2058-1. Google Scholar

[95]

E. Horst, Global strong solutions of Vlasov's equation-necessary and sufficient conditions for their existence,, In Partial differential equations (Warsaw, (1984), 143. Google Scholar

[96]

E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system,, Math. Methods Appl. Sci., 16 (1993), 75. doi: 10.1002/mma.1670160202. Google Scholar

[97]

T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the $3$-D Euler equations,, Comm. Pure Appl. Math., 43 (1990), 965. doi: 10.1002/cpa.3160430803. Google Scholar

[98]

T. Y. Hou, J. Lowengrub and M. J. Shelley, The convergence of an exact desingularization for vortex methods,, SIAM J. Sci. Comput., 14 (1993), 1. doi: 10.1137/0914001. Google Scholar

[99]

R. Illner and M. Pulvirenti, Global validity of the boltzmann equation for two- and three-dimensional rare gas in vacuum,, Comm. Math. Phys., 121 (1989), 143. Google Scholar

[100]

P. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation,, Comm. Math. Phys., 250 (2004), 415. doi: 10.1007/s00220-004-1126-3. Google Scholar

[101]

P. Jabin and B. Perthame, Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid,, In Modelling in applied sciences, (2000), 111. Google Scholar

[102]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.2307/2153966. Google Scholar

[103]

J. H. Jeans, On the theory of star-streaming and the structure of the universe,, Monthly Notices of the Royal Astronomical Society, 76 (1915), 70. Google Scholar

[104]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032. Google Scholar

[105]

M. Kac, Foundations of kinetic theory,, In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 1954. Google Scholar

[106]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. Google Scholar

[107]

M. K.-H. Kiessling, On the equilibrium statistical mechanics of isothermal classical self-gravitating matter,, J. Statist. Phys., 55 (1989), 203. doi: 10.1007/BF01042598. Google Scholar

[108]

M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,, Comm. Pure Appl. Math., 46 (1993), 27. doi: 10.1002/cpa.3160460103. Google Scholar

[109]

M. K.-H. Kiessling and H. Spohn, A note on the eigenvalue density of random matrices,, Comm. Math. Phys., 199 (1999), 683. doi: 10.1007/s002200050516. Google Scholar

[110]

J. G. Kirkwood, The statistical mechanical theory of transport processes i. general theory,, The Journal of Chemical Physics, 14 (1946). Google Scholar

[111]

J. G. Kirkwood, The statistical mechanical theory of transport processes i. transport in gases,, The Journal of Chemical Physics, 15 (1947). Google Scholar

[112]

U. Krause, A discrete nonlinear and non-autonomous model of consensus formation,, Communications in difference equations, (2000), 227. Google Scholar

[113]

C. Lancellotti, On the fluctuations about the Vlasov limit for $N$-particle systems with mean-field interactions,, J. Stat. Phys., 136 (2009), 643. doi: 10.1007/s10955-009-9800-7. Google Scholar

[114]

L. Landau, On the vibrations of the electronic plasma,, Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz., 16 (1946), 574. Google Scholar

[115]

O. E. Lanford, III, Time evolution of large classical systems,, In Dynamical systems, (1974), 1. Google Scholar

[116]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8. Google Scholar

[117]

M. Lemou, F. Méhats and P. Raphaël, Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 825. doi: 10.1016/j.anihpc.2006.07.003. Google Scholar

[118]

A. Lenard, On Bogoliubov's kinetic equation for a spatially homogeneous plasma,, Ann. Physics, 10 (1960), 390. Google Scholar

[119]

P.-L. Lions and S. Mas-Gallic, Une méthode particulaire déterministe pour des équations diffusives non linéaires,, C. R. Math. Acad. Sci. Paris, 332 (2001), 369. doi: 10.1016/S0764-4442(00)01795-X. Google Scholar

[120]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[121]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, J. Math. Pures Appl. (9), 86 (2006), 68. doi: 10.1016/j.matpur.2006.01.005. Google Scholar

[122]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, volume 96 of Applied Mathematical Sciences,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-4284-0. Google Scholar

[123]

R. J. McCann, Stable rotating binary stars and fluid in a tube,, Houston J. Math., 32 (2006), 603. Google Scholar

[124]

H. P. McKean, Jr., Propagation of chaos for a class of non-linear parabolic equations,, In Stochastic Differential Equations (Lecture Series in Differential Equations, (1967), 41. Google Scholar

[125]

J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation,, J. Statist. Phys., 29 (1982), 561. doi: 10.1007/BF01342187. Google Scholar

[126]

S. Mischler, Sur le programme de Kac concernant les limites de champ moyen,, In Seminaire: Equations aux Dérivées Partielles. 2009-2010, (2012), 2009. Google Scholar

[127]

S. Mischler and C. Mouhot, Kac's Program in Kinetic Theory,, Invent. Math., 193 (2013), 1. doi: 10.1007/s00222-012-0422-3. Google Scholar

[128]

S. Mischler, C. Mouhot and B. Wennberg, A New Approach to Quantitative Chaos Propagation for Drift, Diffusion and Jump Process,, Arxiv, (2013). Google Scholar

[129]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923. doi: 10.1007/s10955-011-0285-9. Google Scholar

[130]

C. Mouhot and C. Villani, On Landau damping,, Acta Math., 207 (2011), 29. doi: 10.1007/s11511-011-0068-9. Google Scholar

[131]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[132]

H. Neunzert and J. Wick, The convergence of simulation methods in plasma physics,, In Mathematical methods of plasmaphysics (Oberwolfach, (1979), 271. Google Scholar

[133]

H. Osada, Propagation of chaos for the two-dimensional Navier-Stokes equation,, In Probabilistic methods in mathematical physics (Katata/Kyoto, (1985), 303. Google Scholar

[134]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976. Google Scholar

[135]

C. Pallard, Moment propagation for weak solutions to the Vlasov-Poisson system,, Comm. Partial Differential Equations, 37 (2012), 1273. doi: 10.1080/03605302.2011.606863. Google Scholar

[136]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407. Google Scholar

[137]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics. Birkhäuser Verlag, (2007). Google Scholar

[138]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, J. Differential Equations, 95 (1992), 281. doi: 10.1016/0022-0396(92)90033-J. Google Scholar

[139]

F. Planchon, An extension of the Beale-Kato-Majda criterion for the Euler equations,, Comm. Math. Phys., 232 (2003), 319. doi: 10.1007/s00220-002-0744-x. Google Scholar

[140]

M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis,, J. Math. Biol., 33 (1995), 388. doi: 10.1007/BF00176379. Google Scholar

[141]

N. Rougerie and S. Serfaty, Higher dimensional coulomb gases and renormalized energy functionals,, , (2013). Google Scholar

[142]

D. G. Saari, Improbability of collisions in Newtonian gravitational systems. II,, Trans. Amer. Math. Soc., 181 (1973), 351. doi: 10.1090/S0002-9947-1973-0321386-0. Google Scholar

[143]

D. G. Saari, A global existence theorem for the four-body problem of Newtonian mechanics,, J. Differential Equations, 26 (1977), 80. doi: 10.1016/0022-0396(77)90100-0. Google Scholar

[144]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Comm. Partial Differential Equations, 16 (1991), 1313. doi: 10.1080/03605309108820801. Google Scholar

[145]

S. Schochet, The weak vorticity formulation of the $2$-D Euler equations and concentration-cancellation,, Comm. Partial Differential Equations, 20 (1995), 1077. doi: 10.1080/03605309508821124. Google Scholar

[146]

S. Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations,, Comm. Pure Appl. Math., 49 (1996), 911. doi: 10.1002/(SICI)1097-0312(199609)49:9<911::AID-CPA2>3.0.CO;2-A. Google Scholar

[147]

Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications,, Birkhäuser, (2007). doi: 10.1007/978-0-8176-4573-1. Google Scholar

[148]

H. Spohn, On the vlasov hierarchy,, Math. Methods Appl. Sci., 3 (1981), 445. doi: 10.1002/mma.1670030131. Google Scholar

[149]

H. Spohn, Large Scale Dynamics of Interacting Particles,, Springer Verlag, (1991). doi: 10.1007/978-3-642-84371-6. Google Scholar

[150]

A.-S. Sznitman, Topics in propagation of chaos,, In École d'Été de Probabilités de Saint-Flour XIX-1989, (1464), 165. doi: 10.1007/BFb0085169. Google Scholar

[151]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Biol., 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6. Google Scholar

[152]

M. Trocheris, On the derivation of the one-dimensional Vlasov equation,, Transport Theory Statist. Phys., 15 (1986), 597. doi: 10.1080/00411458608212706. Google Scholar

[153]

V. S. Varadarajan, On the convergence of sample probability distributions,, Sankhyā, 19 (1958), 23. Google Scholar

[154]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Physical Review Letters, 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[155]

C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics,, American Mathematical Society, (2003). doi: 10.1007/b12016. Google Scholar

[156]

A. A. Vlasov, On vibration properties of electron gas,, Soviet Physics Uspekhi, 10 (1968). doi: 10.1070/PU1968v010n06ABEH003709. Google Scholar

[157]

A. A. Vlasov, The vibrational properties of an electron gas,, Sov. Phys. Usp., 10 (1968), 721. doi: 10.1070/PU1968v010n06ABEH003709. Google Scholar

[158]

S. Wollman, On the approximation of the Vlasov-Poisson system by particle methods,, SIAM J. Numer. Anal., 37 (2000), 1369. doi: 10.1137/S0036142999298528. Google Scholar

[159]

H. Xia, H. Wang and Z. Xuan, Opinion dynamics: A multidisciplinary review and perspective on future research,, International Journal of Knowledge and Systems Science (IJKSS), 2 (2011), 72. doi: 10.4018/jkss.2011100106. Google Scholar

[160]

Z. Xia, The existence of noncollision singularities in Newtonian systems,, Ann. of Math. (2), 135 (1992), 411. doi: 10.2307/2946572. Google Scholar

[161]

V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid,, Math. Res. Lett., 2 (1995), 27. doi: 10.4310/MRL.1995.v2.n1.a4. Google Scholar

[162]

J. Yvon, La théorie statistique des fluides et l'équation d'état (in french),, Actual. Sci. Indust., (1935). Google Scholar

show all references

References:
[1]

S. J. Aarseth, Gravitational N-Body Simulations,, Cambridge Monographs on Mathematical Physics. Cambridge University Press, (2003). doi: 10.1017/CBO9780511535246. Google Scholar

[2]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227. doi: 10.1007/s00222-004-0367-2. Google Scholar

[3]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields,, In Calculus of variations and nonlinear partial differential equations, (1927), 1. doi: 10.1007/978-3-540-75914-0_1. Google Scholar

[4]

H. Andréasson, M. Kunze and G. Rein, Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter,, Comm. Partial Differential Equations, 33 (2008), 656. doi: 10.1080/03605300701454883. Google Scholar

[5]

A. A. Arsen'ev, Existence in the large of a weak solution of Vlasov's system of equations,, Ž. Vyčisl. Mat. i Mat. Fiz., 15 (1975), 136. Google Scholar

[6]

R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics,, Wiley-Interscience [John Wiley & Sons], (1975). Google Scholar

[7]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in $3$ space variables with small initial data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101. Google Scholar

[8]

C. Bardos, L. Erdös, F. Golse, N. Mauser and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum n-body problem,, C. R. Math. Acad. Sci. Paris, 334 (2002), 515. doi: 10.1016/S1631-073X(02)02253-7. Google Scholar

[9]

C. Bardos, F. Golse, A. D. Gottlieb and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation,, J. Math. Pures Appl. (9), 82 (2003), 665. doi: 10.1016/S0021-7824(03)00023-0. Google Scholar

[10]

J. Barré, M. Hauray and P. E. Jabin, Stability of trajectories for N-particle dynamics with a singular potential,, Journal of Statistical Mechanics: Theory and Experiment, (2010). Google Scholar

[11]

J. Barré and P. E. Jabin, Free transport limit for $N$-particles dynamics with singular and short range potential,, J. Stat. Phys., 131 (2008), 1085. doi: 10.1007/s10955-008-9526-y. Google Scholar

[12]

J. Batt, $N$-particle approximation to the nonlinear Vlasov-Poisson system,, In Proceedings of the Third World Congress of Nonlinear Analysts, 47 (2001), 1445. doi: 10.1016/S0362-546X(01)00280-2. Google Scholar

[13]

J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions,, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411. Google Scholar

[14]

J. Bedrossian and N. Masmoudi, Asymptotic stability for the Couette flow in the 2D Euler equations,, Appl. Math. Res. Express. AMRX, (2014), 157. Google Scholar

[15]

L. Berlyand, P. Jabin and M. Potomkin, Complexity reduction in many particle systems with random initial data,, Submitted to J. Uncertainty Quantification., (). Google Scholar

[16]

A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels,, Nonlinearity, 22 (2009), 683. doi: 10.1088/0951-7715/22/3/009. Google Scholar

[17]

A. L. Bertozzi, T. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation,, Comm. Pure Appl. Math., 64 (2011), 45. doi: 10.1002/cpa.20334. Google Scholar

[18]

C. Birdsall and A. Langdon, Plasma Physics Via Computer Simulation,, Series in plasma physics. Adam Hilger, (1991). doi: 10.1887/0750301171. Google Scholar

[19]

N. N. Bogoliubov, Kinetic equations,, Journal of Experimental and Theoretical Physics (in Russian), 16 (1946), 691. Google Scholar

[20]

N. N. Bogoliubov, Kinetic equations,, Journal of Physics USSR, 10 (1946), 265. Google Scholar

[21]

E. Boissard, Problèmes D'interaction Discret-continu et Distances de Wasserstein,, PhD thesis, (2011). Google Scholar

[22]

E. Boissard, Simple bounds for convergence of empirical and occupation measures in 1-Wasserstein distance,, Electron. J. Probab., 16 (2011), 2296. doi: 10.1214/EJP.v16-958. Google Scholar

[23]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming,, Math. Models Methods Appl. Sci., 21 (2011), 2179. doi: 10.1142/S0218202511005702. Google Scholar

[24]

F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces,, Probab. Theory Related Fields, 137 (2007), 541. doi: 10.1007/s00440-006-0004-7. Google Scholar

[25]

M. Born and H. S. Green, A general kinetic theory of liquids i. the molecular distribution functions,, Proc. Roy. Soc. A, 188 (1946), 10. doi: 10.1098/rspa.1946.0093. Google Scholar

[26]

F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation,, Arch. Ration. Mech. Anal., 157 (2001), 75. doi: 10.1007/PL00004237. Google Scholar

[27]

F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system,, Arch. Ration. Mech. Anal., 170 (2003), 1. doi: 10.1007/s00205-003-0265-6. Google Scholar

[28]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory,, L. Desvillettes and B. Perthame eds, (2000). Google Scholar

[29]

W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles,, Comm. Math. Phys., 56 (1977), 101. doi: 10.1007/BF01611497. Google Scholar

[30]

E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description,, Comm. Math. Phys., 143 (1992), 501. doi: 10.1007/BF02099262. Google Scholar

[31]

E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II,, Comm. Math. Phys., 174 (1995), 229. doi: 10.1007/BF02099602. Google Scholar

[32]

E. Caglioti and F. Rousset, Long time behavior of particle systems in the mean field limit,, Commun. Math. Sci., 1 (2007), 11. doi: 10.4310/CMS.2007.v5.n5.a3. Google Scholar

[33]

E. Caglioti and F. Rousset, Quasi-stationary states for particle systems in the mean-field limit,, J. Stat. Phys., 129 (2007), 241. doi: 10.1007/s10955-007-9390-1. Google Scholar

[34]

E. Caglioti and F. Rousset, Long time estimates in the mean field limit,, Arch. Ration. Mech. Anal., 190 (2008), 517. doi: 10.1007/s00205-008-0157-x. Google Scholar

[35]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$,, Commun. Math. Sci., 6 (2008), 417. doi: 10.4310/CMS.2008.v6.n2.a8. Google Scholar

[36]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85. doi: 10.3934/krm.2010.3.85. Google Scholar

[37]

J. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and wasserstein distances,, In Collective Dynamics from Bacteria to Crowds, (2014), 1. doi: 10.1007/978-3-7091-1785-9_1. Google Scholar

[38]

J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations,, Duke Math. J., 156 (2011), 229. doi: 10.1215/00127094-2010-211. Google Scholar

[39]

J. A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials,, Nonlinear Anal., 100 (2014), 122. doi: 10.1016/j.na.2014.01.010. Google Scholar

[40]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,, Springer-Verlag, (1994). doi: 10.1007/978-1-4419-8524-8. Google Scholar

[41]

T. Champion, L. De Pascale and P. Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps,, SIAM J. Math. Anal., 40 (2008), 1. doi: 10.1137/07069938X. Google Scholar

[42]

P.-H. Chavanis, Hamiltonian and Brownian systems with long-range interactions. V. Stochastic kinetic equations and theory of fluctuations,, Phys. A., 387 (2008), 5716. doi: 10.1016/j.physa.2008.06.016. Google Scholar

[43]

J.-Y. Chemin, Perfect Incompressible Fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press, (1998). Google Scholar

[44]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x. Google Scholar

[45]

G.-H. Cottet, J. Goodman and T. Y. Hou, Convergence of the grid-free point vortex method for the three-dimensional Euler equations,, SIAM J. Numer. Anal., 28 (1991), 291. doi: 10.1137/0728016. Google Scholar

[46]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow,, J. Reine Angew. Math., 616 (2008), 15. doi: 10.1515/CRELLE.2008.016. Google Scholar

[47]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842. Google Scholar

[48]

F. Cucker and S. Smale, On the mathematics of emergence,, Japan J. Math., 2 (2007), 197. doi: 10.1007/s11537-007-0647-x. Google Scholar

[49]

M. Cullen, W. Gangbo and G. Pisante, The semigeostrophic equations discretized in reference and dual variables,, Arch. Ration. Mech. Anal., 185 (2007), 341. doi: 10.1007/s00205-006-0040-6. Google Scholar

[50]

C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations,, In Handbook of differential equations: evolutionary equations. Vol. III, (2007), 277. Google Scholar

[51]

P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonlinear Sci., 23 (2013), 427. doi: 10.1007/s00332-012-9157-y. Google Scholar

[52]

P. Degond and F.-J. Mustieles, A deterministic approximation of diffusion equations using particles,, SIAM J. Sci. Statist. Comput., 11 (1990), 293. doi: 10.1137/0911018. Google Scholar

[53]

W. Dehnen, A very fast and momentum-conserving tree code,, The Astrophysical Journal, 536 (2000). Google Scholar

[54]

J.-M. Delort, Existence de nappes de tourbillon en dimension deux,, J. Amer. Math. Soc., 4 (1991), 553. doi: 10.1090/S0894-0347-1991-1102579-6. Google Scholar

[55]

L. Desvillettes, F. Golse and V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow,, J. Stat. Phys., 131 (2008), 941. doi: 10.1007/s10955-008-9521-3. Google Scholar

[56]

M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case,, J. Differential Equations, 250 (2011), 1334. doi: 10.1016/j.jde.2010.10.015. Google Scholar

[57]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729. doi: 10.1002/cpa.3160420603. Google Scholar

[58]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations,, Invent. Math, 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[59]

V. Dobrić and J. E. Yukich, Asymptotics for transportation cost in high dimensions,, J. Theoret. Probab., 8 (1995), 97. doi: 10.1007/BF02213456. Google Scholar

[60]

R. L. Dobrušin, Vlasov equations,, Funktsional. Anal. i Prilozhen., 13 (1979), 48. Google Scholar

[61]

L. Erdős, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems,, Invent. Math., 167 (2007), 515. doi: 10.1007/s00222-006-0022-1. Google Scholar

[62]

L. Erdős, B. Schlein and H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,, Ann. of Math. (2), 172 (2010), 291. doi: 10.4007/annals.2010.172.291. Google Scholar

[63]

N. Fournier and A. Guillin, On the rate of convergence in wasserstein distance of the empirical measure,, , (2014). Google Scholar

[64]

N. Fournier, M. Hauray and S. Mischler, Propagation of chaos for the 2d viscous vortex model,, J. Eur. Math. Soc., 16 (2014), 1425. doi: 10.4171/JEMS/465. Google Scholar

[65]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), (2013). Google Scholar

[66]

K. Ganguly, J. T. Lee and H. D. Victory, Jr., On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed,, SIAM J. Numer. Anal., 28 (1991), 1574. doi: 10.1137/0728080. Google Scholar

[67]

K. Ganguly and H. D. Victory, Jr., On the convergence of particle methods for multidimensional Vlasov-Poisson systems,, SIAM J. Numer. Anal., 26 (1989), 249. doi: 10.1137/0726015. Google Scholar

[68]

F. Gao, Moderate deviations and large deviations for kernel density estimators,, J. Theoret. Probab., 16 (2003), 401. doi: 10.1023/A:1023574711733. Google Scholar

[69]

I. Gasser, P.-E. Jabin and B. Perthame, Regularity and propagation of moments in some nonlinear Vlasov systems,, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 1259. doi: 10.1017/S0308210500000676. Google Scholar

[70]

J. W. Gibbs, On the Fundamental Formulae of Dynamics,, Amer. J. Math., 2 (1879), 49. doi: 10.2307/2369196. Google Scholar

[71]

J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics,, Dover publications, (1960). Google Scholar

[72]

R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996). doi: 10.1137/1.9781611971477. Google Scholar

[73]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, II,, Arch. Rational Mech. Anal., 141 (1998), 331. doi: 10.1007/s002050050079. Google Scholar

[74]

F. Golse, On the dynamics of large particle systems in the mean field limit,, , (2013). Google Scholar

[75]

F. Golse, C. Mouhot and V. Ricci, Empirical measures and Vlasov hierarchies,, Kinet. Relat. Models, 6 (2013), 919. doi: 10.3934/krm.2013.6.919. Google Scholar

[76]

J. Goodman and T. Y. Hou, New stability estimates for the $2$-D vortex method,, Comm. Pure Appl. Math., 44 (1991), 1015. doi: 10.1002/cpa.3160440813. Google Scholar

[77]

J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the $2$-D Euler equations,, Comm. Pure Appl. Math., 43 (1990), 415. doi: 10.1002/cpa.3160430305. Google Scholar

[78]

H. Grad, On the kinetic theory of rarefied gases,, Comm. on Pure and Appl. Math., 2 (1949), 331. doi: 10.1002/cpa.3160020403. Google Scholar

[79]

L. Greengard and V. Rokhlin, A fast algorithm for particle simulation,, Journal of Computational Physics, 73 (1987), 325. doi: 10.1016/0021-9991(87)90140-9. Google Scholar

[80]

L. Greengard and V. Rokhlin, Rapid evaluation of potential fields in three dimensions,, Lecture Notes in Mathematics, 1360 (1988), 121. doi: 10.1007/BFb0089775. Google Scholar

[81]

Y. N. Grigoryev, V. A. Vshivkov and M. P. Fedoruk, Numerical "Particle-in-Cell" Methods: Theory and Applications,, De Gruyter, (2002). doi: 10.1515/9783110916706. Google Scholar

[82]

O. Guéant, J.-M. Lasry, and P.-L. Lions, Mean field games and applications,, In Paris-Princeton Lectures on Mathematical Finance 2010, (2011), 205. doi: 10.1007/978-3-642-14660-2_3. Google Scholar

[83]

V. Gyrya, L. Berlyand, I. Aranson and D. A. Karpeev, A model of hydrodynamics interaction between swimming bacteria,, Bulletin of Mathematical Biology, 72 (2010), 148. doi: 10.1007/s11538-009-9442-6. Google Scholar

[84]

M. Hauray, On Liouville transport equation with force field in $BV_{loc}$,, Comm. Partial Differential Equations, 29 (2004), 207. doi: 10.1081/PDE-120028850. Google Scholar

[85]

M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations,, Math. Models Methods Appl. Sci., 19 (2009), 1357. doi: 10.1142/S0218202509003814. Google Scholar

[86]

M. Hauray, Mean field limit for the one dimensional vlasov-poisson equation,, Séminaire Laurent Schwartz, (2013). Google Scholar

[87]

M. Hauray and P.-E. Jabin, $N$-particles approximation of the Vlasov equations with singular potential,, Arch. Ration. Mech. Anal., 183 (2007), 489. doi: 10.1007/s00205-006-0021-9. Google Scholar

[88]

M. Hauray and P.-E. Jabin, Particles Approximations of Vlasov Equations with Singular Forces: Propagation of Chaos,, To appearAnn. Sci. Ec. Norm. Super., (2014). Google Scholar

[89]

M. Hauray and S. Mischler, On kac's chaos and related problems,, J. Funct. Anal., 266 (2014), 6055. doi: 10.1016/j.jfa.2014.02.030. Google Scholar

[90]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, Journal of Artifical Societies and Social Simulation (JASSS), (2002). Google Scholar

[91]

M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model,, J. Math. Biol., 35 (1996), 177. doi: 10.1007/s002850050049. Google Scholar

[92]

E. Hewitt and L. Savage, Symmetric measures on cartesian products,, Trans. Amer. Math. Soc., 80 (1955), 470. doi: 10.1090/S0002-9947-1955-0076206-8. Google Scholar

[93]

A. Honig, B. Niethammer and F. Otto, On first-order corrections to the lsw theory i: Infinite systems,, Journal of Statistical Physics, 119 (2005), 61. doi: 10.1007/s10955-004-2057-2. Google Scholar

[94]

A. Honig, B. Niethammer and F. Otto, On first-order corrections to the lsw theory ii: Finite systems,, Journal of Statistical Physics, 119 (2005), 123. doi: 10.1007/s10955-004-2058-1. Google Scholar

[95]

E. Horst, Global strong solutions of Vlasov's equation-necessary and sufficient conditions for their existence,, In Partial differential equations (Warsaw, (1984), 143. Google Scholar

[96]

E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system,, Math. Methods Appl. Sci., 16 (1993), 75. doi: 10.1002/mma.1670160202. Google Scholar

[97]

T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the $3$-D Euler equations,, Comm. Pure Appl. Math., 43 (1990), 965. doi: 10.1002/cpa.3160430803. Google Scholar

[98]

T. Y. Hou, J. Lowengrub and M. J. Shelley, The convergence of an exact desingularization for vortex methods,, SIAM J. Sci. Comput., 14 (1993), 1. doi: 10.1137/0914001. Google Scholar

[99]

R. Illner and M. Pulvirenti, Global validity of the boltzmann equation for two- and three-dimensional rare gas in vacuum,, Comm. Math. Phys., 121 (1989), 143. Google Scholar

[100]

P. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation,, Comm. Math. Phys., 250 (2004), 415. doi: 10.1007/s00220-004-1126-3. Google Scholar

[101]

P. Jabin and B. Perthame, Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid,, In Modelling in applied sciences, (2000), 111. Google Scholar

[102]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.2307/2153966. Google Scholar

[103]

J. H. Jeans, On the theory of star-streaming and the structure of the universe,, Monthly Notices of the Royal Astronomical Society, 76 (1915), 70. Google Scholar

[104]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032. Google Scholar

[105]

M. Kac, Foundations of kinetic theory,, In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 1954. Google Scholar

[106]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. Google Scholar

[107]

M. K.-H. Kiessling, On the equilibrium statistical mechanics of isothermal classical self-gravitating matter,, J. Statist. Phys., 55 (1989), 203. doi: 10.1007/BF01042598. Google Scholar

[108]

M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,, Comm. Pure Appl. Math., 46 (1993), 27. doi: 10.1002/cpa.3160460103. Google Scholar

[109]

M. K.-H. Kiessling and H. Spohn, A note on the eigenvalue density of random matrices,, Comm. Math. Phys., 199 (1999), 683. doi: 10.1007/s002200050516. Google Scholar

[110]

J. G. Kirkwood, The statistical mechanical theory of transport processes i. general theory,, The Journal of Chemical Physics, 14 (1946). Google Scholar

[111]

J. G. Kirkwood, The statistical mechanical theory of transport processes i. transport in gases,, The Journal of Chemical Physics, 15 (1947). Google Scholar

[112]

U. Krause, A discrete nonlinear and non-autonomous model of consensus formation,, Communications in difference equations, (2000), 227. Google Scholar

[113]

C. Lancellotti, On the fluctuations about the Vlasov limit for $N$-particle systems with mean-field interactions,, J. Stat. Phys., 136 (2009), 643. doi: 10.1007/s10955-009-9800-7. Google Scholar

[114]

L. Landau, On the vibrations of the electronic plasma,, Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz., 16 (1946), 574. Google Scholar

[115]

O. E. Lanford, III, Time evolution of large classical systems,, In Dynamical systems, (1974), 1. Google Scholar

[116]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8. Google Scholar

[117]

M. Lemou, F. Méhats and P. Raphaël, Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 825. doi: 10.1016/j.anihpc.2006.07.003. Google Scholar

[118]

A. Lenard, On Bogoliubov's kinetic equation for a spatially homogeneous plasma,, Ann. Physics, 10 (1960), 390. Google Scholar

[119]

P.-L. Lions and S. Mas-Gallic, Une méthode particulaire déterministe pour des équations diffusives non linéaires,, C. R. Math. Acad. Sci. Paris, 332 (2001), 369. doi: 10.1016/S0764-4442(00)01795-X. Google Scholar

[120]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[121]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, J. Math. Pures Appl. (9), 86 (2006), 68. doi: 10.1016/j.matpur.2006.01.005. Google Scholar

[122]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, volume 96 of Applied Mathematical Sciences,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-4284-0. Google Scholar

[123]

R. J. McCann, Stable rotating binary stars and fluid in a tube,, Houston J. Math., 32 (2006), 603. Google Scholar

[124]

H. P. McKean, Jr., Propagation of chaos for a class of non-linear parabolic equations,, In Stochastic Differential Equations (Lecture Series in Differential Equations, (1967), 41. Google Scholar

[125]

J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation,, J. Statist. Phys., 29 (1982), 561. doi: 10.1007/BF01342187. Google Scholar

[126]

S. Mischler, Sur le programme de Kac concernant les limites de champ moyen,, In Seminaire: Equations aux Dérivées Partielles. 2009-2010, (2012), 2009. Google Scholar

[127]

S. Mischler and C. Mouhot, Kac's Program in Kinetic Theory,, Invent. Math., 193 (2013), 1. doi: 10.1007/s00222-012-0422-3. Google Scholar

[128]

S. Mischler, C. Mouhot and B. Wennberg, A New Approach to Quantitative Chaos Propagation for Drift, Diffusion and Jump Process,, Arxiv, (2013). Google Scholar

[129]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923. doi: 10.1007/s10955-011-0285-9. Google Scholar

[130]

C. Mouhot and C. Villani, On Landau damping,, Acta Math., 207 (2011), 29. doi: 10.1007/s11511-011-0068-9. Google Scholar

[131]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[132]

H. Neunzert and J. Wick, The convergence of simulation methods in plasma physics,, In Mathematical methods of plasmaphysics (Oberwolfach, (1979), 271. Google Scholar

[133]

H. Osada, Propagation of chaos for the two-dimensional Navier-Stokes equation,, In Probabilistic methods in mathematical physics (Katata/Kyoto, (1985), 303. Google Scholar

[134]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976. Google Scholar

[135]

C. Pallard, Moment propagation for weak solutions to the Vlasov-Poisson system,, Comm. Partial Differential Equations, 37 (2012), 1273. doi: 10.1080/03605302.2011.606863. Google Scholar

[136]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407. Google Scholar

[137]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics. Birkhäuser Verlag, (2007). Google Scholar

[138]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, J. Differential Equations, 95 (1992), 281. doi: 10.1016/0022-0396(92)90033-J. Google Scholar

[139]

F. Planchon, An extension of the Beale-Kato-Majda criterion for the Euler equations,, Comm. Math. Phys., 232 (2003), 319. doi: 10.1007/s00220-002-0744-x. Google Scholar

[140]

M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis,, J. Math. Biol., 33 (1995), 388. doi: 10.1007/BF00176379. Google Scholar

[141]

N. Rougerie and S. Serfaty, Higher dimensional coulomb gases and renormalized energy functionals,, , (2013). Google Scholar

[142]

D. G. Saari, Improbability of collisions in Newtonian gravitational systems. II,, Trans. Amer. Math. Soc., 181 (1973), 351. doi: 10.1090/S0002-9947-1973-0321386-0. Google Scholar

[143]

D. G. Saari, A global existence theorem for the four-body problem of Newtonian mechanics,, J. Differential Equations, 26 (1977), 80. doi: 10.1016/0022-0396(77)90100-0. Google Scholar

[144]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Comm. Partial Differential Equations, 16 (1991), 1313. doi: 10.1080/03605309108820801. Google Scholar

[145]

S. Schochet, The weak vorticity formulation of the $2$-D Euler equations and concentration-cancellation,, Comm. Partial Differential Equations, 20 (1995), 1077. doi: 10.1080/03605309508821124. Google Scholar

[146]

S. Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations,, Comm. Pure Appl. Math., 49 (1996), 911. doi: 10.1002/(SICI)1097-0312(199609)49:9<911::AID-CPA2>3.0.CO;2-A. Google Scholar

[147]

Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications,, Birkhäuser, (2007). doi: 10.1007/978-0-8176-4573-1. Google Scholar

[148]

H. Spohn, On the vlasov hierarchy,, Math. Methods Appl. Sci., 3 (1981), 445. doi: 10.1002/mma.1670030131. Google Scholar

[149]

H. Spohn, Large Scale Dynamics of Interacting Particles,, Springer Verlag, (1991). doi: 10.1007/978-3-642-84371-6. Google Scholar

[150]

A.-S. Sznitman, Topics in propagation of chaos,, In École d'Été de Probabilités de Saint-Flour XIX-1989, (1464), 165. doi: 10.1007/BFb0085169. Google Scholar

[151]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Biol., 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6. Google Scholar

[152]

M. Trocheris, On the derivation of the one-dimensional Vlasov equation,, Transport Theory Statist. Phys., 15 (1986), 597. doi: 10.1080/00411458608212706. Google Scholar

[153]

V. S. Varadarajan, On the convergence of sample probability distributions,, Sankhyā, 19 (1958), 23. Google Scholar

[154]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Physical Review Letters, 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[155]

C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics,, American Mathematical Society, (2003). doi: 10.1007/b12016. Google Scholar

[156]

A. A. Vlasov, On vibration properties of electron gas,, Soviet Physics Uspekhi, 10 (1968). doi: 10.1070/PU1968v010n06ABEH003709. Google Scholar

[157]

A. A. Vlasov, The vibrational properties of an electron gas,, Sov. Phys. Usp., 10 (1968), 721. doi: 10.1070/PU1968v010n06ABEH003709. Google Scholar

[158]

S. Wollman, On the approximation of the Vlasov-Poisson system by particle methods,, SIAM J. Numer. Anal., 37 (2000), 1369. doi: 10.1137/S0036142999298528. Google Scholar

[159]

H. Xia, H. Wang and Z. Xuan, Opinion dynamics: A multidisciplinary review and perspective on future research,, International Journal of Knowledge and Systems Science (IJKSS), 2 (2011), 72. doi: 10.4018/jkss.2011100106. Google Scholar

[160]

Z. Xia, The existence of noncollision singularities in Newtonian systems,, Ann. of Math. (2), 135 (1992), 411. doi: 10.2307/2946572. Google Scholar

[161]

V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid,, Math. Res. Lett., 2 (1995), 27. doi: 10.4310/MRL.1995.v2.n1.a4. Google Scholar

[162]

J. Yvon, La théorie statistique des fluides et l'équation d'état (in french),, Actual. Sci. Indust., (1935). Google Scholar

[1]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[2]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[3]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[4]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[5]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[6]

Xia Chen, Tuoc Phan. Free energy in a mean field of Brownian particles. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 747-769. doi: 10.3934/dcds.2019031

[7]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[8]

Mathias Schäffner, Anja Schlömerkemper. On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks & Heterogeneous Media, 2018, 13 (1) : 95-118. doi: 10.3934/nhm.2018005

[9]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[10]

Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465

[11]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[12]

Michele Gianfelice, Enza Orlandi. Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks & Heterogeneous Media, 2014, 9 (2) : 269-297. doi: 10.3934/nhm.2014.9.269

[13]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 847-863. doi: 10.3934/dcdsb.2013.18.847

[14]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[15]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[16]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[17]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[18]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[19]

Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro. Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks & Heterogeneous Media, 2018, 13 (1) : 1-26. doi: 10.3934/nhm.2018001

[20]

Chang-Shou Lin. An expository survey on the recent development of mean field equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 387-410. doi: 10.3934/dcds.2007.19.387

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]