• Previous Article
    Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres
  • KRM Home
  • This Issue
  • Next Article
    Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations
December  2014, 7(4): 739-753. doi: 10.3934/krm.2014.7.739

Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received  April 2014 Revised  July 2014 Published  November 2014

We study the convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible model with ill-prepared initial data in critical Besov spaces. Under the condition that the initial data is small in some norm, we show that the convergence holds globally as the Mach number goes to zero. Moreover, we also obtain the convergence rate.
Citation: Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739
References:
[1]

H. Bahouri, J.-Y.Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften 343, 343 (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J.-Y. Chemin, Perfect Incompressible Fluids,, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, 14 (1995).   Google Scholar

[3]

R. Danchin, Zero Mach number limit in critial spaces for compressible Navier-Stokes equations,, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 27.  doi: 10.1016/S0012-9593(01)01085-0.  Google Scholar

[4]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions,, Amer. J. Math., 124 (2002), 1153.  doi: 10.1353/ajm.2002.0036.  Google Scholar

[5]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271.  doi: 10.1098/rspa.1999.0403.  Google Scholar

[6]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions,, J. Math. Pures Appl., 78 (1999), 461.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[7]

I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations,, J. Math. Kyoto Univ., 40 (2000), 525.   Google Scholar

[8]

J.-F. Gerbeau, C. Le Bris and L. Claude, Mathematical Methods For The Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation. Oxford University Press, (2006).  doi: 10.1093/acprof:oso/9780198566656.001.0001.  Google Scholar

[9]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system,, Nonlinear Anal. Real World Appl., 12 (2011), 2962.  doi: 10.1016/j.nonrwa.2011.04.017.  Google Scholar

[10]

L. Hsiao, Q-C. Ju and F.-C. Li, The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data,, Chin. Ann. Math. Ser. B, 30 (2009), 17.  doi: 10.1007/s11401-008-0039-4.  Google Scholar

[11]

X-P. Hu and D.-H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272.  doi: 10.1137/080723983.  Google Scholar

[12]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients,, SIAM J. Math. Anal., 42 (2010), 2539.  doi: 10.1137/100785168.  Google Scholar

[13]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions,, Comm. Math. Phys., 297 (2010), 371.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media,, 2nd ed., (1984).   Google Scholar

[15]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations,, J. Differential Equations, 252 (2012), 2725.  doi: 10.1016/j.jde.2011.10.002.  Google Scholar

[16]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199.  doi: 10.1016/S0294-1449(00)00123-2.  Google Scholar

[17]

C. X. Miao and B. Q. Yuan, On the well-posesness of the Cauchy problem for an MHD system in Besov spaces,, Math.Meth.Appl.Sci., 32 (2009), 53.  doi: 10.1002/mma.1026.  Google Scholar

[18]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, 78 (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y.Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften 343, 343 (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J.-Y. Chemin, Perfect Incompressible Fluids,, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, 14 (1995).   Google Scholar

[3]

R. Danchin, Zero Mach number limit in critial spaces for compressible Navier-Stokes equations,, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 27.  doi: 10.1016/S0012-9593(01)01085-0.  Google Scholar

[4]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions,, Amer. J. Math., 124 (2002), 1153.  doi: 10.1353/ajm.2002.0036.  Google Scholar

[5]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271.  doi: 10.1098/rspa.1999.0403.  Google Scholar

[6]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions,, J. Math. Pures Appl., 78 (1999), 461.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[7]

I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations,, J. Math. Kyoto Univ., 40 (2000), 525.   Google Scholar

[8]

J.-F. Gerbeau, C. Le Bris and L. Claude, Mathematical Methods For The Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation. Oxford University Press, (2006).  doi: 10.1093/acprof:oso/9780198566656.001.0001.  Google Scholar

[9]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system,, Nonlinear Anal. Real World Appl., 12 (2011), 2962.  doi: 10.1016/j.nonrwa.2011.04.017.  Google Scholar

[10]

L. Hsiao, Q-C. Ju and F.-C. Li, The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data,, Chin. Ann. Math. Ser. B, 30 (2009), 17.  doi: 10.1007/s11401-008-0039-4.  Google Scholar

[11]

X-P. Hu and D.-H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272.  doi: 10.1137/080723983.  Google Scholar

[12]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients,, SIAM J. Math. Anal., 42 (2010), 2539.  doi: 10.1137/100785168.  Google Scholar

[13]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions,, Comm. Math. Phys., 297 (2010), 371.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media,, 2nd ed., (1984).   Google Scholar

[15]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations,, J. Differential Equations, 252 (2012), 2725.  doi: 10.1016/j.jde.2011.10.002.  Google Scholar

[16]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199.  doi: 10.1016/S0294-1449(00)00123-2.  Google Scholar

[17]

C. X. Miao and B. Q. Yuan, On the well-posesness of the Cauchy problem for an MHD system in Besov spaces,, Math.Meth.Appl.Sci., 32 (2009), 53.  doi: 10.1002/mma.1026.  Google Scholar

[18]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, 78 (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[1]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[2]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[3]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[4]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[5]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[6]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[10]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[11]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[12]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[13]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[14]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]