• Previous Article
    Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres
  • KRM Home
  • This Issue
  • Next Article
    Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations
December  2014, 7(4): 739-753. doi: 10.3934/krm.2014.7.739

Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received  April 2014 Revised  July 2014 Published  November 2014

We study the convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible model with ill-prepared initial data in critical Besov spaces. Under the condition that the initial data is small in some norm, we show that the convergence holds globally as the Mach number goes to zero. Moreover, we also obtain the convergence rate.
Citation: Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739
References:
[1]

H. Bahouri, J.-Y.Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften 343, 343 (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

J.-Y. Chemin, Perfect Incompressible Fluids,, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, 14 (1995). Google Scholar

[3]

R. Danchin, Zero Mach number limit in critial spaces for compressible Navier-Stokes equations,, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 27. doi: 10.1016/S0012-9593(01)01085-0. Google Scholar

[4]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions,, Amer. J. Math., 124 (2002), 1153. doi: 10.1353/ajm.2002.0036. Google Scholar

[5]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271. doi: 10.1098/rspa.1999.0403. Google Scholar

[6]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions,, J. Math. Pures Appl., 78 (1999), 461. doi: 10.1016/S0021-7824(99)00032-X. Google Scholar

[7]

I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations,, J. Math. Kyoto Univ., 40 (2000), 525. Google Scholar

[8]

J.-F. Gerbeau, C. Le Bris and L. Claude, Mathematical Methods For The Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation. Oxford University Press, (2006). doi: 10.1093/acprof:oso/9780198566656.001.0001. Google Scholar

[9]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system,, Nonlinear Anal. Real World Appl., 12 (2011), 2962. doi: 10.1016/j.nonrwa.2011.04.017. Google Scholar

[10]

L. Hsiao, Q-C. Ju and F.-C. Li, The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data,, Chin. Ann. Math. Ser. B, 30 (2009), 17. doi: 10.1007/s11401-008-0039-4. Google Scholar

[11]

X-P. Hu and D.-H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272. doi: 10.1137/080723983. Google Scholar

[12]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients,, SIAM J. Math. Anal., 42 (2010), 2539. doi: 10.1137/100785168. Google Scholar

[13]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions,, Comm. Math. Phys., 297 (2010), 371. doi: 10.1007/s00220-010-0992-0. Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media,, 2nd ed., (1984). Google Scholar

[15]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations,, J. Differential Equations, 252 (2012), 2725. doi: 10.1016/j.jde.2011.10.002. Google Scholar

[16]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199. doi: 10.1016/S0294-1449(00)00123-2. Google Scholar

[17]

C. X. Miao and B. Q. Yuan, On the well-posesness of the Cauchy problem for an MHD system in Besov spaces,, Math.Meth.Appl.Sci., 32 (2009), 53. doi: 10.1002/mma.1026. Google Scholar

[18]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, 78 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y.Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften 343, 343 (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

J.-Y. Chemin, Perfect Incompressible Fluids,, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, 14 (1995). Google Scholar

[3]

R. Danchin, Zero Mach number limit in critial spaces for compressible Navier-Stokes equations,, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 27. doi: 10.1016/S0012-9593(01)01085-0. Google Scholar

[4]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions,, Amer. J. Math., 124 (2002), 1153. doi: 10.1353/ajm.2002.0036. Google Scholar

[5]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271. doi: 10.1098/rspa.1999.0403. Google Scholar

[6]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions,, J. Math. Pures Appl., 78 (1999), 461. doi: 10.1016/S0021-7824(99)00032-X. Google Scholar

[7]

I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations,, J. Math. Kyoto Univ., 40 (2000), 525. Google Scholar

[8]

J.-F. Gerbeau, C. Le Bris and L. Claude, Mathematical Methods For The Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation. Oxford University Press, (2006). doi: 10.1093/acprof:oso/9780198566656.001.0001. Google Scholar

[9]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system,, Nonlinear Anal. Real World Appl., 12 (2011), 2962. doi: 10.1016/j.nonrwa.2011.04.017. Google Scholar

[10]

L. Hsiao, Q-C. Ju and F.-C. Li, The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data,, Chin. Ann. Math. Ser. B, 30 (2009), 17. doi: 10.1007/s11401-008-0039-4. Google Scholar

[11]

X-P. Hu and D.-H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272. doi: 10.1137/080723983. Google Scholar

[12]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients,, SIAM J. Math. Anal., 42 (2010), 2539. doi: 10.1137/100785168. Google Scholar

[13]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions,, Comm. Math. Phys., 297 (2010), 371. doi: 10.1007/s00220-010-0992-0. Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media,, 2nd ed., (1984). Google Scholar

[15]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations,, J. Differential Equations, 252 (2012), 2725. doi: 10.1016/j.jde.2011.10.002. Google Scholar

[16]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199. doi: 10.1016/S0294-1449(00)00123-2. Google Scholar

[17]

C. X. Miao and B. Q. Yuan, On the well-posesness of the Cauchy problem for an MHD system in Besov spaces,, Math.Meth.Appl.Sci., 32 (2009), 53. doi: 10.1002/mma.1026. Google Scholar

[18]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, 78 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[1]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[2]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[3]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[4]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[5]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[6]

Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763

[7]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[8]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[9]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[10]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[11]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[12]

Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187

[13]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[14]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[15]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[16]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[17]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[18]

Hong Cai, Zhong Tan. Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1847-1868. doi: 10.3934/dcds.2016.36.1847

[19]

Eduard Feireisl, Hana Petzeltová. Low Mach number asymptotics for reacting compressible fluid flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 455-480. doi: 10.3934/dcds.2010.26.455

[20]

Eduard Feireisl, Antonin Novotny, Yongzhong Sun. Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 121-143. doi: 10.3934/dcds.2014.34.121

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]