-
Previous Article
$(N-1)$ velocity components condition for the generalized MHD system in $N-$dimension
- KRM Home
- This Issue
-
Next Article
Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces
Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres
1. | Steklov Mathematical Institute of the Russian Academy of Sciences, Gubkina str. 8, 119991 Moscow, Russian Federation |
Also we show that similar functions are exact smooth solutions for the recently proposed generalized Enskog equation. They can be referred to as ``particle-like'' or ``soliton-like'' solutions and are analogues of multisoliton solutions of the Korteweg--de Vries equation.
References:
[1] |
L. Arkeryd and C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation,, Comm. PDE, 14 (1989), 1071.
doi: 10.1080/03605308908820644. |
[2] |
L. Arkeryd and C. Cercignani, Global existence in $L_1$ for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation,, J. Stat. Phys., 59 (1990), 845.
doi: 10.1007/BF01025854. |
[3] |
N. Bellomo and M. Lachowicz, On the asymptotic theory of the Boltzmann and Enskog equations: A rigorous $H$-theorem for the Enskog equation,, Springer Lecture Notes in Mathematics: Mathematical Aspects of Fluid and Plasma Dynamics, 1460 (1991), 15.
doi: 10.1007/BFb0091358. |
[4] |
A. V. Bobylev, Tochnye resheniya uravneniya Boltsmana,, (Russian) [Exact solutions of the Boltzmann equation], 225 (1975), 1296.
|
[5] |
L. Boltzmann, Vorlesungen Über Gastheorie,, (German) [Lectures on gas theory], (1896). Google Scholar |
[6] |
N. V. Brilliantov and T. Pöschel, Kinetic theory of granular gases,, Oxford University Press, (2004).
doi: 10.1093/acprof:oso/9780198530381.001.0001. |
[7] |
N. N. Bogolyubov, Microscopic solutions of the Boltzmann-Enskog equation in kinetic theory for elastic balls,, Theor. Math. Phys., 24 (1975), 242.
|
[8] |
N. N. Bogolubov and N. N. Bogolubov, Jr., Introduction to Quantum Statistical Mechanics,, Gordon and Breach, (2010).
doi: 10.1142/7623. |
[9] |
M. S. Borovchenkova and V. I. Gerasimenko, On the non-Markovian Enskog equation for granular gases,, J. Phys. A: Math. Theor., 47 (2014).
doi: 10.1088/1751-8113/47/3/035001. |
[10] |
C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations,, Kluwer Academic Publishing, (1997).
doi: 10.1007/978-94-011-5558-8. |
[11] |
C. Cercignani, On the Boltzmann equation for rigid spheres,, Transport Theory and Statistical Physics, 2 (1972), 211.
doi: 10.1080/00411457208232538. |
[12] |
C. Cercignani, Theory and Application of the Boltzmann Equation,, Elsevier, (1975).
|
[13] |
V. I. Gerasimenko and I. V. Gapyak, Hard sphere dynamics and the Enskog equation,, Kinet. Relat. Models, 5 (2012), 459.
doi: 10.3934/krm.2012.5.459. |
[14] |
S.-Y. Ha and S. E. Noh, Global weak solutions and uniform $L^p$-stability of the Boltzmann-Enskog equation,, J. Differential Equations, 251 (2011), 1.
doi: 10.1016/j.jde.2011.03.021. |
[15] |
R. Illner and M. Pulvirenti, A derivation of the BBGKY hierarchy for hard sphere particle systems,, Trans. Theory Stat. Phys., 16 (1987), 997.
doi: 10.1080/00411458708204603. |
[16] |
V. V. Kozlov, Teplovoye Ravnovesie Po Gibbsu i Puankare,, (Russian) [Thermal Equilibrium in the sense of Gibbs and Poincaré], (2002).
|
[17] |
V. V. Kozlov, Thermal Equilibrium in the sense of Gibbs and Poincar'e,, Dokl. Akad. Nauk, 382 (2002), 602.
|
[18] |
V. V. Kozlov and D. V. Treshchev, Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems,, Theor. Math. Phys., 134 (2003), 339.
doi: 10.1023/A:1022697321418. |
[19] |
V. V. Kozlov and D. V. Treshchev, Evolution of measures in the phase space of nonlinear Hamiltonian systems,, Theor. Math. Phys., 136 (2003), 1325.
doi: 10.1023/A:1025607517444. |
[20] |
M.-Y. Lee, T.-P. Liu and S.-H. Yu, Large-time behavior of solutions for the Boltzmann equation with hard potentials,, Comm. Math. Phys., 269 (2007), 17.
doi: 10.1007/s00220-006-0108-z. |
[21] |
T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.
doi: 10.1002/cpa.20011. |
[22] |
T.-P. Liu and S.-H. Yu, Green's function of Boltzmann equation, 3-D waves,, Bulletin of Institute of Mathematics, 1 (2006), 1.
|
[23] |
A. I. Mikhailov, Functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem,, $p$-Adic Numbers, 3 (2011), 205.
doi: 10.1134/S2070046611030046. |
[24] |
D. Ya. Petrina and V. I. Gerasimenko, Mathematical problems of statistical mechanics of a system of elastic balls,, Russian Mathematical Surveys, 45 (1990), 153.
doi: 10.1070/RM1990v045n03ABEH002360. |
[25] |
D. Ya. Petrina and G. L. Garaffini, Analog of the Liouville equation and BBGKY hierarchy for a system of hard spheres with inelastic collisions,, Ukrainian Mathematical Journal, 57 (2005), 967.
doi: 10.1007/s11253-005-0242-3. |
[26] |
D. Ya. Petrina and G. L. Garaffini, Solutions of the BBGKY hierarchy for a system of hard spheres with inelastic collisions,, Ukrainian Mathematical Journal, 58 (2006), 371.
doi: 10.1007/s11253-006-0075-8. |
[27] |
E. V. Piskovskiy, On functional approach to classical mechanics,, $p$-Adic Numbers, 3 (2011), 243.
doi: 10.1134/S2070046611030095. |
[28] |
E. V. Piskovskiy and I. V. Volovich, On the correspondence between Newtonian and functional mechanics,, in Quantum Bio-Informatics IV. From Quantum Infarmation to Bio-Informatics, (2011), 363.
doi: 10.1142/9789814343763_0028. |
[29] |
P. Resibois, $H$-theorem for the (modified) nonlinear Enskog equation,, Phys. Rev. Lett., 40 (1978), 1409.
doi: 10.1103/PhysRevLett.40.1409. |
[30] |
S. Simonella, Evolution of correlation functions in the hard sphere dynamics,, J. Stat. Phys., 155 (2014), 1191.
doi: 10.1007/s10955-013-0905-7. |
[31] |
H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, preprint,, , (1985). Google Scholar |
[32] |
A. S. Trushechkin, Microscopic solutions of the Boltzmann-Enskog equation and the irreversibility problem,, Proc. Steklov Inst. Math., 285 (2014), 251. Google Scholar |
[33] |
A. S. Trushechkin, Irreversibility and the role of an instrument in the functional formulation of classical mechanics,, Theoret. and Math. Phys., 164 (2010), 1198.
doi: 10.1007/s11232-010-0100-9. |
[34] |
A. S. Trushechkin and I. V. Volovich, Functional classical mechanics and rational numbers,, p-Adic Numbers Ultrametric Anal. Appl., 1 (2009), 361.
doi: 10.1134/S2070046609040086. |
[35] |
A. A. Vlasov, Many-Particle Theory and Its Application to Plasma,, Gordon and Breach, (1961).
|
[36] |
I. V. Volovich, The irreversibilty problem and functional formulation of classical mechanics, preprint,, , (). Google Scholar |
[37] |
I. V. Volovich, Randomness in classical mechanics and quantum mechanics,, Found. Phys., 41 (2011), 516.
doi: 10.1007/s10701-010-9450-2. |
[38] |
I. V. Volovich, Bogolyubov equations and functional mechanics,, Theoret. and Math. Phys., 164 (2010), 1128.
doi: 10.1007/s11232-010-0090-7. |
show all references
References:
[1] |
L. Arkeryd and C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation,, Comm. PDE, 14 (1989), 1071.
doi: 10.1080/03605308908820644. |
[2] |
L. Arkeryd and C. Cercignani, Global existence in $L_1$ for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation,, J. Stat. Phys., 59 (1990), 845.
doi: 10.1007/BF01025854. |
[3] |
N. Bellomo and M. Lachowicz, On the asymptotic theory of the Boltzmann and Enskog equations: A rigorous $H$-theorem for the Enskog equation,, Springer Lecture Notes in Mathematics: Mathematical Aspects of Fluid and Plasma Dynamics, 1460 (1991), 15.
doi: 10.1007/BFb0091358. |
[4] |
A. V. Bobylev, Tochnye resheniya uravneniya Boltsmana,, (Russian) [Exact solutions of the Boltzmann equation], 225 (1975), 1296.
|
[5] |
L. Boltzmann, Vorlesungen Über Gastheorie,, (German) [Lectures on gas theory], (1896). Google Scholar |
[6] |
N. V. Brilliantov and T. Pöschel, Kinetic theory of granular gases,, Oxford University Press, (2004).
doi: 10.1093/acprof:oso/9780198530381.001.0001. |
[7] |
N. N. Bogolyubov, Microscopic solutions of the Boltzmann-Enskog equation in kinetic theory for elastic balls,, Theor. Math. Phys., 24 (1975), 242.
|
[8] |
N. N. Bogolubov and N. N. Bogolubov, Jr., Introduction to Quantum Statistical Mechanics,, Gordon and Breach, (2010).
doi: 10.1142/7623. |
[9] |
M. S. Borovchenkova and V. I. Gerasimenko, On the non-Markovian Enskog equation for granular gases,, J. Phys. A: Math. Theor., 47 (2014).
doi: 10.1088/1751-8113/47/3/035001. |
[10] |
C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations,, Kluwer Academic Publishing, (1997).
doi: 10.1007/978-94-011-5558-8. |
[11] |
C. Cercignani, On the Boltzmann equation for rigid spheres,, Transport Theory and Statistical Physics, 2 (1972), 211.
doi: 10.1080/00411457208232538. |
[12] |
C. Cercignani, Theory and Application of the Boltzmann Equation,, Elsevier, (1975).
|
[13] |
V. I. Gerasimenko and I. V. Gapyak, Hard sphere dynamics and the Enskog equation,, Kinet. Relat. Models, 5 (2012), 459.
doi: 10.3934/krm.2012.5.459. |
[14] |
S.-Y. Ha and S. E. Noh, Global weak solutions and uniform $L^p$-stability of the Boltzmann-Enskog equation,, J. Differential Equations, 251 (2011), 1.
doi: 10.1016/j.jde.2011.03.021. |
[15] |
R. Illner and M. Pulvirenti, A derivation of the BBGKY hierarchy for hard sphere particle systems,, Trans. Theory Stat. Phys., 16 (1987), 997.
doi: 10.1080/00411458708204603. |
[16] |
V. V. Kozlov, Teplovoye Ravnovesie Po Gibbsu i Puankare,, (Russian) [Thermal Equilibrium in the sense of Gibbs and Poincaré], (2002).
|
[17] |
V. V. Kozlov, Thermal Equilibrium in the sense of Gibbs and Poincar'e,, Dokl. Akad. Nauk, 382 (2002), 602.
|
[18] |
V. V. Kozlov and D. V. Treshchev, Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems,, Theor. Math. Phys., 134 (2003), 339.
doi: 10.1023/A:1022697321418. |
[19] |
V. V. Kozlov and D. V. Treshchev, Evolution of measures in the phase space of nonlinear Hamiltonian systems,, Theor. Math. Phys., 136 (2003), 1325.
doi: 10.1023/A:1025607517444. |
[20] |
M.-Y. Lee, T.-P. Liu and S.-H. Yu, Large-time behavior of solutions for the Boltzmann equation with hard potentials,, Comm. Math. Phys., 269 (2007), 17.
doi: 10.1007/s00220-006-0108-z. |
[21] |
T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.
doi: 10.1002/cpa.20011. |
[22] |
T.-P. Liu and S.-H. Yu, Green's function of Boltzmann equation, 3-D waves,, Bulletin of Institute of Mathematics, 1 (2006), 1.
|
[23] |
A. I. Mikhailov, Functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem,, $p$-Adic Numbers, 3 (2011), 205.
doi: 10.1134/S2070046611030046. |
[24] |
D. Ya. Petrina and V. I. Gerasimenko, Mathematical problems of statistical mechanics of a system of elastic balls,, Russian Mathematical Surveys, 45 (1990), 153.
doi: 10.1070/RM1990v045n03ABEH002360. |
[25] |
D. Ya. Petrina and G. L. Garaffini, Analog of the Liouville equation and BBGKY hierarchy for a system of hard spheres with inelastic collisions,, Ukrainian Mathematical Journal, 57 (2005), 967.
doi: 10.1007/s11253-005-0242-3. |
[26] |
D. Ya. Petrina and G. L. Garaffini, Solutions of the BBGKY hierarchy for a system of hard spheres with inelastic collisions,, Ukrainian Mathematical Journal, 58 (2006), 371.
doi: 10.1007/s11253-006-0075-8. |
[27] |
E. V. Piskovskiy, On functional approach to classical mechanics,, $p$-Adic Numbers, 3 (2011), 243.
doi: 10.1134/S2070046611030095. |
[28] |
E. V. Piskovskiy and I. V. Volovich, On the correspondence between Newtonian and functional mechanics,, in Quantum Bio-Informatics IV. From Quantum Infarmation to Bio-Informatics, (2011), 363.
doi: 10.1142/9789814343763_0028. |
[29] |
P. Resibois, $H$-theorem for the (modified) nonlinear Enskog equation,, Phys. Rev. Lett., 40 (1978), 1409.
doi: 10.1103/PhysRevLett.40.1409. |
[30] |
S. Simonella, Evolution of correlation functions in the hard sphere dynamics,, J. Stat. Phys., 155 (2014), 1191.
doi: 10.1007/s10955-013-0905-7. |
[31] |
H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, preprint,, , (1985). Google Scholar |
[32] |
A. S. Trushechkin, Microscopic solutions of the Boltzmann-Enskog equation and the irreversibility problem,, Proc. Steklov Inst. Math., 285 (2014), 251. Google Scholar |
[33] |
A. S. Trushechkin, Irreversibility and the role of an instrument in the functional formulation of classical mechanics,, Theoret. and Math. Phys., 164 (2010), 1198.
doi: 10.1007/s11232-010-0100-9. |
[34] |
A. S. Trushechkin and I. V. Volovich, Functional classical mechanics and rational numbers,, p-Adic Numbers Ultrametric Anal. Appl., 1 (2009), 361.
doi: 10.1134/S2070046609040086. |
[35] |
A. A. Vlasov, Many-Particle Theory and Its Application to Plasma,, Gordon and Breach, (1961).
|
[36] |
I. V. Volovich, The irreversibilty problem and functional formulation of classical mechanics, preprint,, , (). Google Scholar |
[37] |
I. V. Volovich, Randomness in classical mechanics and quantum mechanics,, Found. Phys., 41 (2011), 516.
doi: 10.1007/s10701-010-9450-2. |
[38] |
I. V. Volovich, Bogolyubov equations and functional mechanics,, Theoret. and Math. Phys., 164 (2010), 1128.
doi: 10.1007/s11232-010-0090-7. |
[1] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[2] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[3] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[4] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[5] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[6] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[7] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[8] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[9] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[10] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[11] |
Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046 |
[12] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[13] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[14] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[15] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[16] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[17] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[18] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[19] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[20] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]