December  2014, 7(4): 779-792. doi: 10.3934/krm.2014.7.779

$(N-1)$ velocity components condition for the generalized MHD system in $N-$dimension

1. 

Department of Mathematics, Washington State University, Pullman, WA 99164-3113, United States

Received  March 2014 Revised  August 2014 Published  November 2014

We study the magnetohydrodynamics system, generalized via a fractional Laplacian. When the domain is in $N-$dimension, $N$ being three, four or five, we show that the regularity criteria of its solution pair may be reduced to $(N-1)$ many velocity field components with the improved integrability condition in comparison to the result in [29]. Furthermore, we extend this result to the three-dimensional magneto-micropolar fluid system.
Citation: Kazuo Yamazaki. $(N-1)$ velocity components condition for the generalized MHD system in $N-$dimension. Kinetic & Related Models, 2014, 7 (4) : 779-792. doi: 10.3934/krm.2014.7.779
References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12 (1974), 657.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

J. Beale, T. Kato and A. Majda, Remarks on breakdown of smooth solutions for the three-dimensional Euler equations,, Comm. Math. Phys., 94 (1984), 61.  doi: 10.1007/BF01212349.  Google Scholar

[3]

S. Benbernou, S. Gala and M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space,, Math. Methods Appl. Sci., 37 (2013), 2320.  doi: 10.1002/mma.2981.  Google Scholar

[4]

L. C. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations,, Proc. Amer. Math. Soc., 130 (2002), 3585.  doi: 10.1090/S0002-9939-02-06697-2.  Google Scholar

[5]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46 (2014), 588.  doi: 10.1137/130937718.  Google Scholar

[8]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.   Google Scholar

[9]

S. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 181.  doi: 10.1007/s00030-009-0047-4.  Google Scholar

[10]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[11]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[12]

H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, (2002), 439.   Google Scholar

[13]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations via partial derivatives, II,, Kinet. Relat. Models, 7 (2014), 291.  doi: 10.3934/krm.2014.7.291.  Google Scholar

[14]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[15]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[16]

G. Lukaszewicz, Micropolar Fluids, Theory and Applications,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[17]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4 (1999), 109.  doi: 10.1155/S1085337599000287.  Google Scholar

[18]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341.  doi: 10.1007/s00021-010-0038-6.  Google Scholar

[19]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[20]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[21]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187.   Google Scholar

[22]

J. Wu, The generalized MHD equations,, J. Differential Equations, 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[23]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[24]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[25]

K. Yamazaki, Regularity criteria of porous media equation in terms of one partial derivative or pressure field,, Commun. Math. Sci., ().   Google Scholar

[26]

K. Yamazaki, Regularity criteria of supercritical beta-generalized quasi-geostrophic equation in terms of partial derivatives,, Electron. J. Differential Equations, 2013 (2013), 1.   Google Scholar

[27]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29 (2014), 46.  doi: 10.1016/j.aml.2013.10.014.  Google Scholar

[28]

K. Yamazaki, Regularity criteria of MHD system involving one velocity component and one current density component,, J. Math. Fluid Mech., 16 (2014), 551.  doi: 10.1007/s00021-014-0178-1.  Google Scholar

[29]

K. Yamazaki, Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components,, J. Math. Phys., 55 (2014).  doi: 10.1063/1.4868277.  Google Scholar

[30]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[31]

B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[32]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31 (2008), 1113.  doi: 10.1002/mma.967.  Google Scholar

[33]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[34]

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbbR^{3}$,, Proc. Amer. Math. Soc., 134 (2006), 149.  doi: 10.1090/S0002-9939-05-08312-7.  Google Scholar

[35]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar

show all references

References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12 (1974), 657.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

J. Beale, T. Kato and A. Majda, Remarks on breakdown of smooth solutions for the three-dimensional Euler equations,, Comm. Math. Phys., 94 (1984), 61.  doi: 10.1007/BF01212349.  Google Scholar

[3]

S. Benbernou, S. Gala and M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space,, Math. Methods Appl. Sci., 37 (2013), 2320.  doi: 10.1002/mma.2981.  Google Scholar

[4]

L. C. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations,, Proc. Amer. Math. Soc., 130 (2002), 3585.  doi: 10.1090/S0002-9939-02-06697-2.  Google Scholar

[5]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46 (2014), 588.  doi: 10.1137/130937718.  Google Scholar

[8]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.   Google Scholar

[9]

S. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 181.  doi: 10.1007/s00030-009-0047-4.  Google Scholar

[10]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[11]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[12]

H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, (2002), 439.   Google Scholar

[13]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations via partial derivatives, II,, Kinet. Relat. Models, 7 (2014), 291.  doi: 10.3934/krm.2014.7.291.  Google Scholar

[14]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[15]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[16]

G. Lukaszewicz, Micropolar Fluids, Theory and Applications,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[17]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4 (1999), 109.  doi: 10.1155/S1085337599000287.  Google Scholar

[18]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341.  doi: 10.1007/s00021-010-0038-6.  Google Scholar

[19]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[20]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[21]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187.   Google Scholar

[22]

J. Wu, The generalized MHD equations,, J. Differential Equations, 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[23]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[24]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[25]

K. Yamazaki, Regularity criteria of porous media equation in terms of one partial derivative or pressure field,, Commun. Math. Sci., ().   Google Scholar

[26]

K. Yamazaki, Regularity criteria of supercritical beta-generalized quasi-geostrophic equation in terms of partial derivatives,, Electron. J. Differential Equations, 2013 (2013), 1.   Google Scholar

[27]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29 (2014), 46.  doi: 10.1016/j.aml.2013.10.014.  Google Scholar

[28]

K. Yamazaki, Regularity criteria of MHD system involving one velocity component and one current density component,, J. Math. Fluid Mech., 16 (2014), 551.  doi: 10.1007/s00021-014-0178-1.  Google Scholar

[29]

K. Yamazaki, Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components,, J. Math. Phys., 55 (2014).  doi: 10.1063/1.4868277.  Google Scholar

[30]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[31]

B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[32]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31 (2008), 1113.  doi: 10.1002/mma.967.  Google Scholar

[33]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[34]

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbbR^{3}$,, Proc. Amer. Math. Soc., 134 (2006), 149.  doi: 10.1090/S0002-9939-05-08312-7.  Google Scholar

[35]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar

[1]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[2]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[3]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[4]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[5]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[6]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[7]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[8]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[9]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[10]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[11]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[12]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[13]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[14]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[15]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[16]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[17]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[18]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[19]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[20]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]