• Previous Article
    Stability of solutions of kinetic equations corresponding to the replicator dynamics
  • KRM Home
  • This Issue
  • Next Article
    Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation
March  2014, 7(1): 79-108. doi: 10.3934/krm.2014.7.79

Long time asymptotics of a degenerate linear kinetic transport equation

1. 

IMPAN, ul. Śniadeckich 8, 00-956 Warsaw, Poland

Received  January 2013 Revised  June 2013 Published  December 2013

In the present article we prove an algebraic rate of decay towards the equilibrium for the solution of a non-homogeneous, linear kinetic transport equation. The estimate is of the form $C(1+t)^{-a}$ for some $a>0$. The total scattering cross-section $R(k)$ is allowed to degenerate but we assume that $R^{-a}(k)$ is integrable with respect to the invariant measure.
Citation: Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Tenth priniting, National Bureau of Standards, Applied Mathematics Series 55, 1972.  Google Scholar

[2]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107. doi: 10.3934/krm.2011.4.87.  Google Scholar

[3]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 151-167. doi: 10.1007/BF00251506.  Google Scholar

[4]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841. doi: 10.4171/RMI/436.  Google Scholar

[5]

A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157. doi: 10.2977/prims/1195188427.  Google Scholar

[6]

M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles, Comm in PDE, 28 (2003), 969-989. doi: 10.1081/PDE-120021182.  Google Scholar

[7]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.  Google Scholar

[8]

L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858. doi: 10.1016/j.bulsci.2008.09.001.  Google Scholar

[9]

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.  Google Scholar

[10]

L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings, "WASCOM 2003'' 12th Conference on Waves and Stability in Continuous Media, 153-165, World Sci. Publ., River Edge, NJ, 2004. doi: 10.1142/9789812702937_0020.  Google Scholar

[11]

G. Doetsch, Introduction to the theory and application of the Laplace transform, Translated from the second German edition by Walter Nader. Springer-Verlag, New York-Heidelberg, 1974. vii+326 pp.  Google Scholar

[12]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, available at http://fr.arxiv.org/abs/1005.1495 (2010) to appear in TAMS. Google Scholar

[13]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189. doi: 10.1088/0951-7715/24/8/003.  Google Scholar

[14]

N. Dunford and J. T. Schwartz, Linear Operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, New York, 1988.  Google Scholar

[15]

K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.  Google Scholar

[16]

S. Ethier and T. Kurtz, Markov Processes, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, New York., 1986. doi: 10.1002/9780470316658.  Google Scholar

[17]

S. R. Foguel, The Ergodic Theory of Markov processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969.  Google Scholar

[18]

Y. Katznelson, An Introduction to Harmonic Analysis, Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.  Google Scholar

[19]

P. D. Lax, Functional Analysis, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.  Google Scholar

[20]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525. doi: 10.1007/s00205-010-0354-2.  Google Scholar

[21]

W. R. Rudin, Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.  Google Scholar

[22]

W. R. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Co., New York, 1987.  Google Scholar

[23]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, 30 Princeton University Press, Princeton, N.J, 1970.  Google Scholar

[24]

T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat Phys, 140 (2010), 518-543. doi: 10.1007/s10955-010-9997-5.  Google Scholar

[25]

S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184. doi: 10.3792/pja/1195519027.  Google Scholar

[26]

A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967.  Google Scholar

[27]

F. Zhang, Matrix Theory Basic Results and Techniques, Second Ed. Universitext, Springer, 2011. doi: 10.1007/978-1-4614-1099-7.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Tenth priniting, National Bureau of Standards, Applied Mathematics Series 55, 1972.  Google Scholar

[2]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107. doi: 10.3934/krm.2011.4.87.  Google Scholar

[3]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 151-167. doi: 10.1007/BF00251506.  Google Scholar

[4]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841. doi: 10.4171/RMI/436.  Google Scholar

[5]

A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157. doi: 10.2977/prims/1195188427.  Google Scholar

[6]

M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles, Comm in PDE, 28 (2003), 969-989. doi: 10.1081/PDE-120021182.  Google Scholar

[7]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.  Google Scholar

[8]

L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858. doi: 10.1016/j.bulsci.2008.09.001.  Google Scholar

[9]

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.  Google Scholar

[10]

L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings, "WASCOM 2003'' 12th Conference on Waves and Stability in Continuous Media, 153-165, World Sci. Publ., River Edge, NJ, 2004. doi: 10.1142/9789812702937_0020.  Google Scholar

[11]

G. Doetsch, Introduction to the theory and application of the Laplace transform, Translated from the second German edition by Walter Nader. Springer-Verlag, New York-Heidelberg, 1974. vii+326 pp.  Google Scholar

[12]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, available at http://fr.arxiv.org/abs/1005.1495 (2010) to appear in TAMS. Google Scholar

[13]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189. doi: 10.1088/0951-7715/24/8/003.  Google Scholar

[14]

N. Dunford and J. T. Schwartz, Linear Operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, New York, 1988.  Google Scholar

[15]

K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.  Google Scholar

[16]

S. Ethier and T. Kurtz, Markov Processes, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, New York., 1986. doi: 10.1002/9780470316658.  Google Scholar

[17]

S. R. Foguel, The Ergodic Theory of Markov processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969.  Google Scholar

[18]

Y. Katznelson, An Introduction to Harmonic Analysis, Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.  Google Scholar

[19]

P. D. Lax, Functional Analysis, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.  Google Scholar

[20]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525. doi: 10.1007/s00205-010-0354-2.  Google Scholar

[21]

W. R. Rudin, Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.  Google Scholar

[22]

W. R. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Co., New York, 1987.  Google Scholar

[23]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, 30 Princeton University Press, Princeton, N.J, 1970.  Google Scholar

[24]

T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat Phys, 140 (2010), 518-543. doi: 10.1007/s10955-010-9997-5.  Google Scholar

[25]

S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184. doi: 10.3792/pja/1195519027.  Google Scholar

[26]

A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967.  Google Scholar

[27]

F. Zhang, Matrix Theory Basic Results and Techniques, Second Ed. Universitext, Springer, 2011. doi: 10.1007/978-1-4614-1099-7.  Google Scholar

[1]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[2]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[3]

Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173

[4]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[5]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[6]

Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic & Related Models, 2020, 13 (2) : 345-371. doi: 10.3934/krm.2020012

[7]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations & Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[8]

Alfredo Lorenzi, Eugenio Sinestrari. Identifying a BV-kernel in a hyperbolic integrodifferential equation. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1199-1219. doi: 10.3934/dcds.2008.21.1199

[9]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[10]

Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations & Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070

[11]

Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91

[12]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems & Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[13]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015

[14]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[15]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[16]

Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic & Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037

[17]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[18]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[19]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[20]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]