March  2014, 7(1): 9-28. doi: 10.3934/krm.2014.7.9

Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$

1. 

Department of Mathematics, Ocean University of China, Qingdao, 266003, China

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708

3. 

Department of Mathematical Sciences, Peking University, Beijing, 100871, China

Received  October 2013 Revised  October 2013 Published  December 2013

This paper establishes the hyper-contractivity in $L^\infty(\mathbb{R}^d)$ (it's known as ultra-contractivity) for the multi-dimensional Keller-Segel systems with the diffusion exponent $m>1-2/d$. The results show that for the supercritical and critical case $1-2/d < m ≤ 2-2/d$, if $||U_0||_{d(2-m)/2} < C_{d,m}$ where $C_{d,m}$ is a universal constant, then for any $t>0$, $||u(\cdot,t)||_{L^\infty(\mathbb{R}^d)}$ is bounded and decays as $t$ goes to infinity. For the subcritical case $m>2-2/d$, the solution $u(\cdot,t) \in L^\infty(\mathbb{R}^d)$ with any initial data $U_0 \in L_+^1(\mathbb{R}^d)$ for any positive time.
Citation: Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models,, Comm. Math. Sci., 9 (2011), 1143.  doi: 10.4310/CMS.2011.v9.n4.a11.  Google Scholar

[3]

S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$,, Comm Math Phy., 323 (2013), 1017.  doi: 10.1007/s00220-013-1777-z.  Google Scholar

[4]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbbR^2$,, Comm. Pure Appl. Math., 61 (2008), 1449.  doi: 10.1002/cpa.20225.  Google Scholar

[5]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Eletron. J. Differ. Equ., (2006).   Google Scholar

[6]

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse,, Nonlinearity, 12 (1999), 1071.  doi: 10.1088/0951-7715/12/4/320.  Google Scholar

[7]

V. Calvez, L. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Part. Diff. Eq., 37 (2012), 561.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[8]

E. A. Carlen, J. A. Carrillo and M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows,, Proc. Nat. Acad. USA, 107 (2010), 19696.  doi: 10.1073/pnas.1008323107.  Google Scholar

[9]

L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $\mathbbR^d$,, C. R. Acad. Sc. Paris, 342 (2006), 745.  doi: 10.1016/j.crma.2006.03.008.  Google Scholar

[10]

M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality,, J. Math. Anal. Appl., 293 (2004), 375.  doi: 10.1016/j.jmaa.2003.10.009.  Google Scholar

[11]

M. Herrero, E. Medina and J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739.  doi: 10.1088/0951-7715/10/6/016.  Google Scholar

[12]

M. Herrero, E. Medina and J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system,, J. Comp. Appl. Math., 97 (1998), 99.  doi: 10.1016/S0377-0427(98)00104-6.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle,, SIAM J. Math. Anal., 44 (2012), 568.  doi: 10.1137/110823584.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis,, Graduate Studies in Mathematics. V. 14, (2001).  doi: 10.1080/13683500108667891.  Google Scholar

[16]

B. Perthame, Transport Equations in Biology,, Birkhaeuser Verlag, (2007).   Google Scholar

[17]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems,, Diff. Int. Eqns., 19 (2006), 841.   Google Scholar

[18]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term,, J. Diff. Eqns., 227 (2006), 333.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[19]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type,, Oxford Lecture Ser. Math. Appl., (2006).   Google Scholar

[20]

J. L. Vázquez, The Porous Medium Equation: Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).   Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models,, Comm. Math. Sci., 9 (2011), 1143.  doi: 10.4310/CMS.2011.v9.n4.a11.  Google Scholar

[3]

S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$,, Comm Math Phy., 323 (2013), 1017.  doi: 10.1007/s00220-013-1777-z.  Google Scholar

[4]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbbR^2$,, Comm. Pure Appl. Math., 61 (2008), 1449.  doi: 10.1002/cpa.20225.  Google Scholar

[5]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Eletron. J. Differ. Equ., (2006).   Google Scholar

[6]

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse,, Nonlinearity, 12 (1999), 1071.  doi: 10.1088/0951-7715/12/4/320.  Google Scholar

[7]

V. Calvez, L. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Part. Diff. Eq., 37 (2012), 561.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[8]

E. A. Carlen, J. A. Carrillo and M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows,, Proc. Nat. Acad. USA, 107 (2010), 19696.  doi: 10.1073/pnas.1008323107.  Google Scholar

[9]

L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $\mathbbR^d$,, C. R. Acad. Sc. Paris, 342 (2006), 745.  doi: 10.1016/j.crma.2006.03.008.  Google Scholar

[10]

M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality,, J. Math. Anal. Appl., 293 (2004), 375.  doi: 10.1016/j.jmaa.2003.10.009.  Google Scholar

[11]

M. Herrero, E. Medina and J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739.  doi: 10.1088/0951-7715/10/6/016.  Google Scholar

[12]

M. Herrero, E. Medina and J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system,, J. Comp. Appl. Math., 97 (1998), 99.  doi: 10.1016/S0377-0427(98)00104-6.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle,, SIAM J. Math. Anal., 44 (2012), 568.  doi: 10.1137/110823584.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis,, Graduate Studies in Mathematics. V. 14, (2001).  doi: 10.1080/13683500108667891.  Google Scholar

[16]

B. Perthame, Transport Equations in Biology,, Birkhaeuser Verlag, (2007).   Google Scholar

[17]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems,, Diff. Int. Eqns., 19 (2006), 841.   Google Scholar

[18]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term,, J. Diff. Eqns., 227 (2006), 333.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[19]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type,, Oxford Lecture Ser. Math. Appl., (2006).   Google Scholar

[20]

J. L. Vázquez, The Porous Medium Equation: Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).   Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]