\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$

Abstract Related Papers Cited by
  • This paper establishes the hyper-contractivity in $L^\infty(\mathbb{R}^d)$ (it's known as ultra-contractivity) for the multi-dimensional Keller-Segel systems with the diffusion exponent $m>1-2/d$. The results show that for the supercritical and critical case $1-2/d < m ≤ 2-2/d$, if $||U_0||_{d(2-m)/2} < C_{d,m}$ where $C_{d,m}$ is a universal constant, then for any $t>0$, $||u(\cdot,t)||_{L^\infty(\mathbb{R}^d)}$ is bounded and decays as $t$ goes to infinity. For the subcritical case $m>2-2/d$, the solution $u(\cdot,t) \in L^\infty(\mathbb{R}^d)$ with any initial data $U_0 \in L_+^1(\mathbb{R}^d)$ for any positive time.
    Mathematics Subject Classification: Primary: 35K65; Secondary: 35B45, 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.doi: 10.1080/03605307908820113.

    [2]

    J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models, Comm. Math. Sci., 9 (2011), 1143-1161.doi: 10.4310/CMS.2011.v9.n4.a11.

    [3]

    S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$, Comm Math Phy., 323 (2013), 1017-1070.doi: 10.1007/s00220-013-1777-z.

    [4]

    A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbbR^2$, Comm. Pure Appl. Math., 61 (2008), 1449-1481.doi: 10.1002/cpa.20225.

    [5]

    A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Eletron. J. Differ. Equ., 2006, 32 pp. (electronic).

    [6]

    M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse, Nonlinearity, 12 (1999), 1071-1098.doi: 10.1088/0951-7715/12/4/320.

    [7]

    V. Calvez, L. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Part. Diff. Eq., 37 (2012), 561-584.doi: 10.1080/03605302.2012.655824.

    [8]

    E. A. Carlen, J. A. Carrillo and M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows, Proc. Nat. Acad. USA, 107 (2010), 19696-19701.doi: 10.1073/pnas.1008323107.

    [9]

    L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $\mathbbR^d$, C. R. Acad. Sc. Paris, Ser. I, 342 (2006), 745-750.doi: 10.1016/j.crma.2006.03.008.

    [10]

    M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality, J. Math. Anal. Appl., 293 (2004), 375-388.doi: 10.1016/j.jmaa.2003.10.009.

    [11]

    M. Herrero, E. Medina and J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754.doi: 10.1088/0951-7715/10/6/016.

    [12]

    M. Herrero, E. Medina and J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system, J. Comp. Appl. Math., 97 (1998), 99-119.doi: 10.1016/S0377-0427(98)00104-6.

    [13]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [14]

    I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle, SIAM J. Math. Anal., 44 (2012), 568-602.doi: 10.1137/110823584.

    [15]

    E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics. V. 14, American Mathematical Society Providence, Rhode Island, 2nd edition, 2001.doi: 10.1080/13683500108667891.

    [16]

    B. Perthame, Transport Equations in Biology, Birkhaeuser Verlag, Basel-Boston-Berlin, 2007.

    [17]

    Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems, Diff. Int. Eqns., 19 (2006), 841-876.

    [18]

    Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term, J. Diff. Eqns., 227 (2006), 333-364.doi: 10.1016/j.jde.2006.03.003.

    [19]

    J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Ser. Math. Appl., vol. 33, 2006.

    [20]

    J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return