Citation: |
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.doi: 10.1080/03605307908820113. |
[2] |
J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models, Comm. Math. Sci., 9 (2011), 1143-1161.doi: 10.4310/CMS.2011.v9.n4.a11. |
[3] |
S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$, Comm Math Phy., 323 (2013), 1017-1070.doi: 10.1007/s00220-013-1777-z. |
[4] |
A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbbR^2$, Comm. Pure Appl. Math., 61 (2008), 1449-1481.doi: 10.1002/cpa.20225. |
[5] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Eletron. J. Differ. Equ., 2006, 32 pp. (electronic). |
[6] |
M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse, Nonlinearity, 12 (1999), 1071-1098.doi: 10.1088/0951-7715/12/4/320. |
[7] |
V. Calvez, L. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Part. Diff. Eq., 37 (2012), 561-584.doi: 10.1080/03605302.2012.655824. |
[8] |
E. A. Carlen, J. A. Carrillo and M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows, Proc. Nat. Acad. USA, 107 (2010), 19696-19701.doi: 10.1073/pnas.1008323107. |
[9] |
L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $\mathbbR^d$, C. R. Acad. Sc. Paris, Ser. I, 342 (2006), 745-750.doi: 10.1016/j.crma.2006.03.008. |
[10] |
M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality, J. Math. Anal. Appl., 293 (2004), 375-388.doi: 10.1016/j.jmaa.2003.10.009. |
[11] |
M. Herrero, E. Medina and J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754.doi: 10.1088/0951-7715/10/6/016. |
[12] |
M. Herrero, E. Medina and J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system, J. Comp. Appl. Math., 97 (1998), 99-119.doi: 10.1016/S0377-0427(98)00104-6. |
[13] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[14] |
I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle, SIAM J. Math. Anal., 44 (2012), 568-602.doi: 10.1137/110823584. |
[15] |
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics. V. 14, American Mathematical Society Providence, Rhode Island, 2nd edition, 2001.doi: 10.1080/13683500108667891. |
[16] |
B. Perthame, Transport Equations in Biology, Birkhaeuser Verlag, Basel-Boston-Berlin, 2007. |
[17] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems, Diff. Int. Eqns., 19 (2006), 841-876. |
[18] |
Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term, J. Diff. Eqns., 227 (2006), 333-364.doi: 10.1016/j.jde.2006.03.003. |
[19] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Ser. Math. Appl., vol. 33, 2006. |
[20] |
J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. |