March  2014, 7(1): 9-28. doi: 10.3934/krm.2014.7.9

Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$

1. 

Department of Mathematics, Ocean University of China, Qingdao, 266003, China

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708

3. 

Department of Mathematical Sciences, Peking University, Beijing, 100871, China

Received  October 2013 Revised  October 2013 Published  December 2013

This paper establishes the hyper-contractivity in $L^\infty(\mathbb{R}^d)$ (it's known as ultra-contractivity) for the multi-dimensional Keller-Segel systems with the diffusion exponent $m>1-2/d$. The results show that for the supercritical and critical case $1-2/d < m ≤ 2-2/d$, if $||U_0||_{d(2-m)/2} < C_{d,m}$ where $C_{d,m}$ is a universal constant, then for any $t>0$, $||u(\cdot,t)||_{L^\infty(\mathbb{R}^d)}$ is bounded and decays as $t$ goes to infinity. For the subcritical case $m>2-2/d$, the solution $u(\cdot,t) \in L^\infty(\mathbb{R}^d)$ with any initial data $U_0 \in L_+^1(\mathbb{R}^d)$ for any positive time.
Citation: Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models,, Comm. Math. Sci., 9 (2011), 1143.  doi: 10.4310/CMS.2011.v9.n4.a11.  Google Scholar

[3]

S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$,, Comm Math Phy., 323 (2013), 1017.  doi: 10.1007/s00220-013-1777-z.  Google Scholar

[4]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbbR^2$,, Comm. Pure Appl. Math., 61 (2008), 1449.  doi: 10.1002/cpa.20225.  Google Scholar

[5]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Eletron. J. Differ. Equ., (2006).   Google Scholar

[6]

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse,, Nonlinearity, 12 (1999), 1071.  doi: 10.1088/0951-7715/12/4/320.  Google Scholar

[7]

V. Calvez, L. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Part. Diff. Eq., 37 (2012), 561.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[8]

E. A. Carlen, J. A. Carrillo and M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows,, Proc. Nat. Acad. USA, 107 (2010), 19696.  doi: 10.1073/pnas.1008323107.  Google Scholar

[9]

L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $\mathbbR^d$,, C. R. Acad. Sc. Paris, 342 (2006), 745.  doi: 10.1016/j.crma.2006.03.008.  Google Scholar

[10]

M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality,, J. Math. Anal. Appl., 293 (2004), 375.  doi: 10.1016/j.jmaa.2003.10.009.  Google Scholar

[11]

M. Herrero, E. Medina and J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739.  doi: 10.1088/0951-7715/10/6/016.  Google Scholar

[12]

M. Herrero, E. Medina and J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system,, J. Comp. Appl. Math., 97 (1998), 99.  doi: 10.1016/S0377-0427(98)00104-6.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle,, SIAM J. Math. Anal., 44 (2012), 568.  doi: 10.1137/110823584.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis,, Graduate Studies in Mathematics. V. 14, (2001).  doi: 10.1080/13683500108667891.  Google Scholar

[16]

B. Perthame, Transport Equations in Biology,, Birkhaeuser Verlag, (2007).   Google Scholar

[17]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems,, Diff. Int. Eqns., 19 (2006), 841.   Google Scholar

[18]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term,, J. Diff. Eqns., 227 (2006), 333.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[19]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type,, Oxford Lecture Ser. Math. Appl., (2006).   Google Scholar

[20]

J. L. Vázquez, The Porous Medium Equation: Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).   Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models,, Comm. Math. Sci., 9 (2011), 1143.  doi: 10.4310/CMS.2011.v9.n4.a11.  Google Scholar

[3]

S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m > 0$,, Comm Math Phy., 323 (2013), 1017.  doi: 10.1007/s00220-013-1777-z.  Google Scholar

[4]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbbR^2$,, Comm. Pure Appl. Math., 61 (2008), 1449.  doi: 10.1002/cpa.20225.  Google Scholar

[5]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Eletron. J. Differ. Equ., (2006).   Google Scholar

[6]

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse,, Nonlinearity, 12 (1999), 1071.  doi: 10.1088/0951-7715/12/4/320.  Google Scholar

[7]

V. Calvez, L. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Part. Diff. Eq., 37 (2012), 561.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[8]

E. A. Carlen, J. A. Carrillo and M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows,, Proc. Nat. Acad. USA, 107 (2010), 19696.  doi: 10.1073/pnas.1008323107.  Google Scholar

[9]

L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $\mathbbR^d$,, C. R. Acad. Sc. Paris, 342 (2006), 745.  doi: 10.1016/j.crma.2006.03.008.  Google Scholar

[10]

M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality,, J. Math. Anal. Appl., 293 (2004), 375.  doi: 10.1016/j.jmaa.2003.10.009.  Google Scholar

[11]

M. Herrero, E. Medina and J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739.  doi: 10.1088/0951-7715/10/6/016.  Google Scholar

[12]

M. Herrero, E. Medina and J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system,, J. Comp. Appl. Math., 97 (1998), 99.  doi: 10.1016/S0377-0427(98)00104-6.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle,, SIAM J. Math. Anal., 44 (2012), 568.  doi: 10.1137/110823584.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis,, Graduate Studies in Mathematics. V. 14, (2001).  doi: 10.1080/13683500108667891.  Google Scholar

[16]

B. Perthame, Transport Equations in Biology,, Birkhaeuser Verlag, (2007).   Google Scholar

[17]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems,, Diff. Int. Eqns., 19 (2006), 841.   Google Scholar

[18]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term,, J. Diff. Eqns., 227 (2006), 333.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[19]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type,, Oxford Lecture Ser. Math. Appl., (2006).   Google Scholar

[20]

J. L. Vázquez, The Porous Medium Equation: Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).   Google Scholar

[1]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[2]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[3]

Su-Hong Jiang, Min Li. A modified strictly contractive peaceman-rachford splitting method for multi-block separable convex programming. Journal of Industrial & Management Optimization, 2018, 14 (1) : 397-412. doi: 10.3934/jimo.2017052

[4]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[5]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[6]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[7]

Yuming Paul Zhang. On a class of diffusion-aggregation equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 907-932. doi: 10.3934/dcds.2020066

[8]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[9]

Shen Bian, Li Chen, Evangelos A. Latos. Chemotaxis model with nonlocal nonlinear reaction in the whole space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5067-5083. doi: 10.3934/dcds.2018222

[10]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[11]

Philip K. Maini, Luisa Malaguti, Cristina Marcelli, Serena Matucci. Diffusion-aggregation processes with mono-stable reaction terms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1175-1189. doi: 10.3934/dcdsb.2006.6.1175

[12]

Mikhail Kuzmin, Stefano Ruggerini. Front propagation in diffusion-aggregation models with bi-stable reaction. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 819-833. doi: 10.3934/dcdsb.2011.16.819

[13]

Jan Haškovec, Dietmar Oelz. A free boundary problem for aggregation by short range sensing and differentiated diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1461-1480. doi: 10.3934/dcdsb.2015.20.1461

[14]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[15]

Armel Ovono Andami. From local to nonlocal in a diffusion model. Conference Publications, 2011, 2011 (Special) : 54-60. doi: 10.3934/proc.2011.2011.54

[16]

J. García-Melián, Julio D. Rossi. A logistic equation with refuge and nonlocal diffusion. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2037-2053. doi: 10.3934/cpaa.2009.8.2037

[17]

Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014

[18]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019211

[19]

Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911

[20]

Tian Xiang. A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2457-2485. doi: 10.3934/dcdsb.2013.18.2457

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]