March  2015, 8(1): 1-27. doi: 10.3934/krm.2015.8.1

Convergence rate for the method of moments with linear closure relations

1. 

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave, Ottawa, Ontario, Canada

2. 

Laboratoire J.-A. Dieudonné, Université de Nice - Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France

3. 

CSCAMM and Department of Mathematics, University of Maryland, College Park, MD 20742-4015, United States

Received  October 2014 Revised  October 2014 Published  December 2014

We study linear closure relations for the moments' method applied to simple kinetic equations. The equations are linear collisional models (velocity jump processes) which are well suited to this type of approximation. In this simplified, 1 dimensional setting, we are able to prove stability estimates for the method (with a kinetic interpretation by a BGK model). Moreover we are also able to obtain convergence rates which automatically increase with the smoothness of the initial data.
Citation: Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1
References:
[1]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,, Phys. Rev., 94 (1954), 511.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[2]

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow,, Oxford Engineering Science Series, (1995).   Google Scholar

[3]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Dokl. Akad. Nauk SSSR, 262 (1982), 71.   Google Scholar

[4]

F. Brini, Hyperbolicity region in extended thermodynamics with 14 moments,, Continuum Mech. Thermodyn., 13 (2001), 1.  doi: 10.1007/s001610100036.  Google Scholar

[5]

Z. Cai, Y. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system in one dimensional space,, Commun. Math. Sci., 11 (2013), 547.  doi: 10.4310/CMS.2013.v11.n2.a12.  Google Scholar

[6]

Z. Cai and R. Li, Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation,, SIAM J. Sci. Comput., 32 (2010), 2875.  doi: 10.1137/100785466.  Google Scholar

[7]

Z. Cai, R. Li and Y. Wang, An efficient NRxx method for Boltzmann-BGK equation,, J. Sci. Comput., 50 (2012), 103.  doi: 10.1007/s10915-011-9475-5.  Google Scholar

[8]

S. Chandrasekhar, Stochastic problems in physics and astronomy,, Rev. Mod. Phys. 15 (1943), 15 (1943), 1.  doi: 10.1103/RevModPhys.15.1.  Google Scholar

[9]

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,, Archive Rat. Mech. Anal. 123 (1993), 123 (1993), 387.  doi: 10.1007/BF00375586.  Google Scholar

[10]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331.  doi: 10.1002/cpa.3160020403.  Google Scholar

[11]

P. Le Tallec and J. P. Perlat, Numerical Analysis of Levermore's Moment System,, Rapport de recherche 3124, (3124).   Google Scholar

[12]

C. D. Levermore, Moment closure hierarchy for kinetic theories,, J. Statist. Phys., 83 (1996), 1021.  doi: 10.1007/BF02179552.  Google Scholar

[13]

C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics,, SIAM J. Appl. Math., 59 (1999), 72.  doi: 10.1137/S0036139996299236.  Google Scholar

[14]

H. G. Othmer and S. R. Dunbar and W. Alt, Models of dispersal in biological systems,, J. Math. Biol., 26 (1988), 263.  doi: 10.1007/BF00277392.  Google Scholar

[15]

B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property,, SIAM J. Numer. Anal., 27 (1990), 1405.  doi: 10.1137/0727081.  Google Scholar

[16]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, volume 3 of Mathematics Monograph Series,, Science Press, (2006).   Google Scholar

[17]

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory,, Springer, (2005).   Google Scholar

[18]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668.  doi: 10.1063/1.1597472.  Google Scholar

[19]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, 3rd edition,, Springer, (2009).  doi: 10.1007/b79761.  Google Scholar

[20]

M. Torrilhon, Two dimensional bulk microflow simulations based on regularized Grad's 13-moment equations,, SIAM Multiscale Model. Simul., 5 (2006), 695.  doi: 10.1137/050635444.  Google Scholar

[21]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multivariate Pearson-IV-distributions,, Commun. Comput. Phys., 7 (2010), 639.  doi: 10.4208/cicp.2009.09.049.  Google Scholar

[22]

D. Vernon Widder, The Laplace Transform,, Princeton University Press, (1941).   Google Scholar

[23]

G. M. Wing, An Introduction to Transport Theory,, New-York, (1962).   Google Scholar

show all references

References:
[1]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,, Phys. Rev., 94 (1954), 511.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[2]

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow,, Oxford Engineering Science Series, (1995).   Google Scholar

[3]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Dokl. Akad. Nauk SSSR, 262 (1982), 71.   Google Scholar

[4]

F. Brini, Hyperbolicity region in extended thermodynamics with 14 moments,, Continuum Mech. Thermodyn., 13 (2001), 1.  doi: 10.1007/s001610100036.  Google Scholar

[5]

Z. Cai, Y. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system in one dimensional space,, Commun. Math. Sci., 11 (2013), 547.  doi: 10.4310/CMS.2013.v11.n2.a12.  Google Scholar

[6]

Z. Cai and R. Li, Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation,, SIAM J. Sci. Comput., 32 (2010), 2875.  doi: 10.1137/100785466.  Google Scholar

[7]

Z. Cai, R. Li and Y. Wang, An efficient NRxx method for Boltzmann-BGK equation,, J. Sci. Comput., 50 (2012), 103.  doi: 10.1007/s10915-011-9475-5.  Google Scholar

[8]

S. Chandrasekhar, Stochastic problems in physics and astronomy,, Rev. Mod. Phys. 15 (1943), 15 (1943), 1.  doi: 10.1103/RevModPhys.15.1.  Google Scholar

[9]

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,, Archive Rat. Mech. Anal. 123 (1993), 123 (1993), 387.  doi: 10.1007/BF00375586.  Google Scholar

[10]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331.  doi: 10.1002/cpa.3160020403.  Google Scholar

[11]

P. Le Tallec and J. P. Perlat, Numerical Analysis of Levermore's Moment System,, Rapport de recherche 3124, (3124).   Google Scholar

[12]

C. D. Levermore, Moment closure hierarchy for kinetic theories,, J. Statist. Phys., 83 (1996), 1021.  doi: 10.1007/BF02179552.  Google Scholar

[13]

C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics,, SIAM J. Appl. Math., 59 (1999), 72.  doi: 10.1137/S0036139996299236.  Google Scholar

[14]

H. G. Othmer and S. R. Dunbar and W. Alt, Models of dispersal in biological systems,, J. Math. Biol., 26 (1988), 263.  doi: 10.1007/BF00277392.  Google Scholar

[15]

B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property,, SIAM J. Numer. Anal., 27 (1990), 1405.  doi: 10.1137/0727081.  Google Scholar

[16]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, volume 3 of Mathematics Monograph Series,, Science Press, (2006).   Google Scholar

[17]

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory,, Springer, (2005).   Google Scholar

[18]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668.  doi: 10.1063/1.1597472.  Google Scholar

[19]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, 3rd edition,, Springer, (2009).  doi: 10.1007/b79761.  Google Scholar

[20]

M. Torrilhon, Two dimensional bulk microflow simulations based on regularized Grad's 13-moment equations,, SIAM Multiscale Model. Simul., 5 (2006), 695.  doi: 10.1137/050635444.  Google Scholar

[21]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multivariate Pearson-IV-distributions,, Commun. Comput. Phys., 7 (2010), 639.  doi: 10.4208/cicp.2009.09.049.  Google Scholar

[22]

D. Vernon Widder, The Laplace Transform,, Princeton University Press, (1941).   Google Scholar

[23]

G. M. Wing, An Introduction to Transport Theory,, New-York, (1962).   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[16]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

[Back to Top]