March  2015, 8(1): 1-27. doi: 10.3934/krm.2015.8.1

Convergence rate for the method of moments with linear closure relations

1. 

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave, Ottawa, Ontario, Canada

2. 

Laboratoire J.-A. Dieudonné, Université de Nice - Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France

3. 

CSCAMM and Department of Mathematics, University of Maryland, College Park, MD 20742-4015, United States

Received  October 2014 Revised  October 2014 Published  December 2014

We study linear closure relations for the moments' method applied to simple kinetic equations. The equations are linear collisional models (velocity jump processes) which are well suited to this type of approximation. In this simplified, 1 dimensional setting, we are able to prove stability estimates for the method (with a kinetic interpretation by a BGK model). Moreover we are also able to obtain convergence rates which automatically increase with the smoothness of the initial data.
Citation: Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1
References:
[1]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,, Phys. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511.

[2]

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow,, Oxford Engineering Science Series, (1995).

[3]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Dokl. Akad. Nauk SSSR, 262 (1982), 71.

[4]

F. Brini, Hyperbolicity region in extended thermodynamics with 14 moments,, Continuum Mech. Thermodyn., 13 (2001), 1. doi: 10.1007/s001610100036.

[5]

Z. Cai, Y. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system in one dimensional space,, Commun. Math. Sci., 11 (2013), 547. doi: 10.4310/CMS.2013.v11.n2.a12.

[6]

Z. Cai and R. Li, Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation,, SIAM J. Sci. Comput., 32 (2010), 2875. doi: 10.1137/100785466.

[7]

Z. Cai, R. Li and Y. Wang, An efficient NRxx method for Boltzmann-BGK equation,, J. Sci. Comput., 50 (2012), 103. doi: 10.1007/s10915-011-9475-5.

[8]

S. Chandrasekhar, Stochastic problems in physics and astronomy,, Rev. Mod. Phys. 15 (1943), 15 (1943), 1. doi: 10.1103/RevModPhys.15.1.

[9]

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,, Archive Rat. Mech. Anal. 123 (1993), 123 (1993), 387. doi: 10.1007/BF00375586.

[10]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331. doi: 10.1002/cpa.3160020403.

[11]

P. Le Tallec and J. P. Perlat, Numerical Analysis of Levermore's Moment System,, Rapport de recherche 3124, (3124).

[12]

C. D. Levermore, Moment closure hierarchy for kinetic theories,, J. Statist. Phys., 83 (1996), 1021. doi: 10.1007/BF02179552.

[13]

C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics,, SIAM J. Appl. Math., 59 (1999), 72. doi: 10.1137/S0036139996299236.

[14]

H. G. Othmer and S. R. Dunbar and W. Alt, Models of dispersal in biological systems,, J. Math. Biol., 26 (1988), 263. doi: 10.1007/BF00277392.

[15]

B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property,, SIAM J. Numer. Anal., 27 (1990), 1405. doi: 10.1137/0727081.

[16]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, volume 3 of Mathematics Monograph Series,, Science Press, (2006).

[17]

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory,, Springer, (2005).

[18]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668. doi: 10.1063/1.1597472.

[19]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, 3rd edition,, Springer, (2009). doi: 10.1007/b79761.

[20]

M. Torrilhon, Two dimensional bulk microflow simulations based on regularized Grad's 13-moment equations,, SIAM Multiscale Model. Simul., 5 (2006), 695. doi: 10.1137/050635444.

[21]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multivariate Pearson-IV-distributions,, Commun. Comput. Phys., 7 (2010), 639. doi: 10.4208/cicp.2009.09.049.

[22]

D. Vernon Widder, The Laplace Transform,, Princeton University Press, (1941).

[23]

G. M. Wing, An Introduction to Transport Theory,, New-York, (1962).

show all references

References:
[1]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,, Phys. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511.

[2]

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow,, Oxford Engineering Science Series, (1995).

[3]

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,, Dokl. Akad. Nauk SSSR, 262 (1982), 71.

[4]

F. Brini, Hyperbolicity region in extended thermodynamics with 14 moments,, Continuum Mech. Thermodyn., 13 (2001), 1. doi: 10.1007/s001610100036.

[5]

Z. Cai, Y. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system in one dimensional space,, Commun. Math. Sci., 11 (2013), 547. doi: 10.4310/CMS.2013.v11.n2.a12.

[6]

Z. Cai and R. Li, Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation,, SIAM J. Sci. Comput., 32 (2010), 2875. doi: 10.1137/100785466.

[7]

Z. Cai, R. Li and Y. Wang, An efficient NRxx method for Boltzmann-BGK equation,, J. Sci. Comput., 50 (2012), 103. doi: 10.1007/s10915-011-9475-5.

[8]

S. Chandrasekhar, Stochastic problems in physics and astronomy,, Rev. Mod. Phys. 15 (1943), 15 (1943), 1. doi: 10.1103/RevModPhys.15.1.

[9]

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,, Archive Rat. Mech. Anal. 123 (1993), 123 (1993), 387. doi: 10.1007/BF00375586.

[10]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331. doi: 10.1002/cpa.3160020403.

[11]

P. Le Tallec and J. P. Perlat, Numerical Analysis of Levermore's Moment System,, Rapport de recherche 3124, (3124).

[12]

C. D. Levermore, Moment closure hierarchy for kinetic theories,, J. Statist. Phys., 83 (1996), 1021. doi: 10.1007/BF02179552.

[13]

C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics,, SIAM J. Appl. Math., 59 (1999), 72. doi: 10.1137/S0036139996299236.

[14]

H. G. Othmer and S. R. Dunbar and W. Alt, Models of dispersal in biological systems,, J. Math. Biol., 26 (1988), 263. doi: 10.1007/BF00277392.

[15]

B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property,, SIAM J. Numer. Anal., 27 (1990), 1405. doi: 10.1137/0727081.

[16]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, volume 3 of Mathematics Monograph Series,, Science Press, (2006).

[17]

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory,, Springer, (2005).

[18]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668. doi: 10.1063/1.1597472.

[19]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, 3rd edition,, Springer, (2009). doi: 10.1007/b79761.

[20]

M. Torrilhon, Two dimensional bulk microflow simulations based on regularized Grad's 13-moment equations,, SIAM Multiscale Model. Simul., 5 (2006), 695. doi: 10.1137/050635444.

[21]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multivariate Pearson-IV-distributions,, Commun. Comput. Phys., 7 (2010), 639. doi: 10.4208/cicp.2009.09.049.

[22]

D. Vernon Widder, The Laplace Transform,, Princeton University Press, (1941).

[23]

G. M. Wing, An Introduction to Transport Theory,, New-York, (1962).

[1]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 847-863. doi: 10.3934/dcdsb.2013.18.847

[2]

Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995

[3]

Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005

[4]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[5]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[6]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[7]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[8]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[9]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[10]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[11]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[12]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[13]

Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017

[14]

Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341

[15]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[16]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[17]

Ken Shirakawa. Stability analysis for phase field systems associated with crystalline-type energies. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 483-504. doi: 10.3934/dcdss.2011.4.483

[18]

Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial & Management Optimization, 2015, 11 (1) : 65-81. doi: 10.3934/jimo.2015.11.65

[19]

Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

[20]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

[Back to Top]