June  2015, 8(2): 235-254. doi: 10.3934/krm.2015.8.235

A kinetic theory description of liquid menisci at the microscale

1. 

Politecnico di Milano, MOX, Dipartimento di Matematica, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

2. 

Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Via La Masa 34, 20156 Milan, Italy, Italy

Received  July 2014 Revised  December 2014 Published  March 2015

A kinetic model for the study of capillary flows in devices with microscale geometry is presented. The model is based on the Enskog-Vlasov kinetic equation and provides a reasonable description of both fluid-fluid and fluid-wall interactions. Numerical solutions are obtained by an extension of the classical Direct Simulation Monte Carlo (DSMC) to dense fluids. The equilibrium properties of liquid menisci between two hydrophilic walls are investigated and the validity of the Laplace-Kelvin equation at the microscale is assessed. The dynamical process which leads to the meniscus breakage is clarified.
Citation: Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235
References:
[1]

M. Allen and D. Tildesley, Computer Simulation of Liquids,, Clarendon Press, (1989).   Google Scholar

[2]

R. Ardito, A. Corigliano and A. Frangi, Multiscale finite element models for predicting spontaneous adhesion in MEMS,, Mecanique Industries, 11 (2010), 177.  doi: 10.1051/meca/2010028.  Google Scholar

[3]

P. Barbante, A. Frezzotti, L. Gibelli and D. Giordano, A kinetic model for collisional effects in dense adsorbed gas layers,, in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics (eds. I. Wysong and A. Garcia), (1333), 458.  doi: 10.1063/1.3562690.  Google Scholar

[4]

P. Barbante, A. Frezzotti, L. Gibelli, P. Legrenzi, A. Corigliano and A. Frangi, A kinetic model for capillary flows in MEMS,, in Proceedings of the 28th International Symposium on Rarefied Gas Dynamics (eds. M. Mareschal and A. Santos), (1501), 713.  doi: 10.1063/1.4769612.  Google Scholar

[5]

G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,, Clarendon Press, (1995).   Google Scholar

[6]

N. Carnahan and K. Starling, Equation of state for nonattracting rigid spheres,, J. Chem. Phys., 51 (1969), 635.  doi: 10.1063/1.1672048.  Google Scholar

[7]

C. Cercignani, The Boltzmann Equation and Its Applications,, Springer, (1988).  doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[8]

S. Cheng and M. Robbins, Capillary adhesion at the nanometer scale,, Phys. Rev. E, 89 (2014).  doi: 10.1103/PhysRevE.89.062402.  Google Scholar

[9]

J. Eggers, Nonlinear dynamics and breakup of free-surface flows,, Reviews of Modern Physics, 69 (1997), 865.  doi: 10.1103/RevModPhys.69.865.  Google Scholar

[10]

D. Enskog, Kinetische theorie der wärmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten,, K. Svensk. Vet. Akad. Handl., 63 (1922), 5.   Google Scholar

[11]

J. Fischer and M. Methfessel, Born-Green-Yvon approach to the local densities of a fluid at interfaces,, Phys. Rev. A, 22 (1980), 2836.  doi: 10.1103/PhysRevA.22.2836.  Google Scholar

[12]

A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation,, Phys. Fluids, 9 (1997), 1329.  doi: 10.1063/1.869247.  Google Scholar

[13]

A. Frezzotti and L. Gibelli, A kinetic model for equilibrium and non-equilibrium structure of the vapor-liquid interface,, in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics (eds. A. Ketsdever and E. Muntz), (2003), 980.  doi: 10.1063/1.1581646.  Google Scholar

[14]

A. Frezzotti and L. Gibelli, A kinetic model for fluid wall interaction,, Proc. IMechE, 222 (2008), 787.  doi: 10.1243/09544062JMES718.  Google Scholar

[15]

A. Frezzotti, L. Gibelli and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum,, Phys. Fluids, 17 (2005).  doi: 10.1063/1.1824111.  Google Scholar

[16]

A. Frezzotti, S. Nedea, A. Markvoort, P. Spijker and L. Gibelli, Comparison of molecular dynamics and kinetic modeling of gas-surface interaction,, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics (ed. T. Abe), (1084), 635.  doi: 10.1063/1.3076554.  Google Scholar

[17]

M. Grmela, Kinetic equation approach to phase transitions,, J. Stat. Phys., 3 (1971), 347.  doi: 10.1007/BF01011389.  Google Scholar

[18]

Z. Guo, T. Zhao and Y. Shi, Simple kinetic model for fluid flows in the nanometer scale,, Phys. Rev. E, 71 (2005).  doi: 10.1103/PhysRevE.71.035301.  Google Scholar

[19]

J. Hansen and I. McDonald, Theory of Simple Liquids,, Academic Press, (2006).   Google Scholar

[20]

A. Hariri, J. Zu, J. Zu and R. B. Mrad, Modeling of wet stiction in microelectromechanical systems MEMS,, J. Microelectromech. Syst., 16 (2007), 1276.  doi: 10.1109/JMEMS.2007.904349.  Google Scholar

[21]

J. Hirschfelder, C. Curtiss and R. Bird, The Molecular Theory of Gases and Liquids,, Wiley-Interscience, (1964).   Google Scholar

[22]

W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments,, Physical Review Letters, 98 (2007).  doi: 10.1103/PhysRevLett.98.064504.  Google Scholar

[23]

J. Karkheck and G. Stell, Mean field kinetic theories,, J. Chem. Phys., 75 (1981), 1475.  doi: 10.1063/1.442154.  Google Scholar

[24]

G. Karniadakis, A. Beskok and A. Narayan, Microflows and Nanoflows: Fundamentals and Simulation,, Springer, (2005).   Google Scholar

[25]

R. Maboudian and R. Howe, Critical review: Stiction in surface micromechanical structures,, J. Vac. Sci. Technol. B, 15 (1997), 1.   Google Scholar

[26]

J. Rowlinson and B. Widom, Molecular Theory of Capillarity,, Dover Pubns, (2003).   Google Scholar

[27]

H. van Beijeren and M. Ernst, The modified Enskog equation,, Physica, 68 (1973), 437.   Google Scholar

show all references

References:
[1]

M. Allen and D. Tildesley, Computer Simulation of Liquids,, Clarendon Press, (1989).   Google Scholar

[2]

R. Ardito, A. Corigliano and A. Frangi, Multiscale finite element models for predicting spontaneous adhesion in MEMS,, Mecanique Industries, 11 (2010), 177.  doi: 10.1051/meca/2010028.  Google Scholar

[3]

P. Barbante, A. Frezzotti, L. Gibelli and D. Giordano, A kinetic model for collisional effects in dense adsorbed gas layers,, in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics (eds. I. Wysong and A. Garcia), (1333), 458.  doi: 10.1063/1.3562690.  Google Scholar

[4]

P. Barbante, A. Frezzotti, L. Gibelli, P. Legrenzi, A. Corigliano and A. Frangi, A kinetic model for capillary flows in MEMS,, in Proceedings of the 28th International Symposium on Rarefied Gas Dynamics (eds. M. Mareschal and A. Santos), (1501), 713.  doi: 10.1063/1.4769612.  Google Scholar

[5]

G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,, Clarendon Press, (1995).   Google Scholar

[6]

N. Carnahan and K. Starling, Equation of state for nonattracting rigid spheres,, J. Chem. Phys., 51 (1969), 635.  doi: 10.1063/1.1672048.  Google Scholar

[7]

C. Cercignani, The Boltzmann Equation and Its Applications,, Springer, (1988).  doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[8]

S. Cheng and M. Robbins, Capillary adhesion at the nanometer scale,, Phys. Rev. E, 89 (2014).  doi: 10.1103/PhysRevE.89.062402.  Google Scholar

[9]

J. Eggers, Nonlinear dynamics and breakup of free-surface flows,, Reviews of Modern Physics, 69 (1997), 865.  doi: 10.1103/RevModPhys.69.865.  Google Scholar

[10]

D. Enskog, Kinetische theorie der wärmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten,, K. Svensk. Vet. Akad. Handl., 63 (1922), 5.   Google Scholar

[11]

J. Fischer and M. Methfessel, Born-Green-Yvon approach to the local densities of a fluid at interfaces,, Phys. Rev. A, 22 (1980), 2836.  doi: 10.1103/PhysRevA.22.2836.  Google Scholar

[12]

A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation,, Phys. Fluids, 9 (1997), 1329.  doi: 10.1063/1.869247.  Google Scholar

[13]

A. Frezzotti and L. Gibelli, A kinetic model for equilibrium and non-equilibrium structure of the vapor-liquid interface,, in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics (eds. A. Ketsdever and E. Muntz), (2003), 980.  doi: 10.1063/1.1581646.  Google Scholar

[14]

A. Frezzotti and L. Gibelli, A kinetic model for fluid wall interaction,, Proc. IMechE, 222 (2008), 787.  doi: 10.1243/09544062JMES718.  Google Scholar

[15]

A. Frezzotti, L. Gibelli and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum,, Phys. Fluids, 17 (2005).  doi: 10.1063/1.1824111.  Google Scholar

[16]

A. Frezzotti, S. Nedea, A. Markvoort, P. Spijker and L. Gibelli, Comparison of molecular dynamics and kinetic modeling of gas-surface interaction,, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics (ed. T. Abe), (1084), 635.  doi: 10.1063/1.3076554.  Google Scholar

[17]

M. Grmela, Kinetic equation approach to phase transitions,, J. Stat. Phys., 3 (1971), 347.  doi: 10.1007/BF01011389.  Google Scholar

[18]

Z. Guo, T. Zhao and Y. Shi, Simple kinetic model for fluid flows in the nanometer scale,, Phys. Rev. E, 71 (2005).  doi: 10.1103/PhysRevE.71.035301.  Google Scholar

[19]

J. Hansen and I. McDonald, Theory of Simple Liquids,, Academic Press, (2006).   Google Scholar

[20]

A. Hariri, J. Zu, J. Zu and R. B. Mrad, Modeling of wet stiction in microelectromechanical systems MEMS,, J. Microelectromech. Syst., 16 (2007), 1276.  doi: 10.1109/JMEMS.2007.904349.  Google Scholar

[21]

J. Hirschfelder, C. Curtiss and R. Bird, The Molecular Theory of Gases and Liquids,, Wiley-Interscience, (1964).   Google Scholar

[22]

W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments,, Physical Review Letters, 98 (2007).  doi: 10.1103/PhysRevLett.98.064504.  Google Scholar

[23]

J. Karkheck and G. Stell, Mean field kinetic theories,, J. Chem. Phys., 75 (1981), 1475.  doi: 10.1063/1.442154.  Google Scholar

[24]

G. Karniadakis, A. Beskok and A. Narayan, Microflows and Nanoflows: Fundamentals and Simulation,, Springer, (2005).   Google Scholar

[25]

R. Maboudian and R. Howe, Critical review: Stiction in surface micromechanical structures,, J. Vac. Sci. Technol. B, 15 (1997), 1.   Google Scholar

[26]

J. Rowlinson and B. Widom, Molecular Theory of Capillarity,, Dover Pubns, (2003).   Google Scholar

[27]

H. van Beijeren and M. Ernst, The modified Enskog equation,, Physica, 68 (1973), 437.   Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[3]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[6]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[9]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[10]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[11]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[12]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[13]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[14]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[15]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[18]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[19]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[20]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (167)
  • HTML views (0)
  • Cited by (36)

Other articles
by authors

[Back to Top]