• Previous Article
    Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions
  • KRM Home
  • This Issue
  • Next Article
    A kinetic theory description of liquid menisci at the microscale
June  2015, 8(2): 255-280. doi: 10.3934/krm.2015.8.255

A Hamilton-Jacobi approach for front propagation in kinetic equations

1. 

UMR CNRS 5669 `UMPA' and INRIA project `NUMED', École Normale Supérieure de Lyon, 46, allée d'Italie, F-69364 Lyon Cedex 07, France

Received  July 2014 Revised  November 2014 Published  March 2015

In this paper we use the theory of viscosity solutions for Hamilton-Jacobi equations to study propagation phenomena in kinetic equations. We perform the hydrodynamic limit of some kinetic models thanks to an adapted WKB ansatz. Our models describe particles moving according to a velocity-jump process, and proliferating thanks to a reaction term of monostable type. The scattering operator is supposed to satisfy a maximum principle. When the velocity space is bounded, we show, under suitable hypotheses, that the phase converges towards the viscosity solution of some constrained Hamilton-Jacobi equation which effective Hamiltonian is obtained solving a suitable eigenvalue problem in the velocity space. In the case of unbounded velocities, the non-solvability of the spectral problem can lead to different behavior. In particular, a front acceleration phenomena can occur. Nevertheless, we expect that when the spectral problem is solvable one can extend the convergence result.
Citation: Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial Differential Equations and Related Topics, (1975), 5.   Google Scholar

[2]

C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size,, Trans. Amer. Math. Soc., 284 (1984), 617.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[3]

G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi,, Mathématiques & Applications (Berlin) [Mathematics & Applications], (1994).   Google Scholar

[4]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Math. J., 61 (1990), 835.  doi: 10.1215/S0012-7094-90-06132-0.  Google Scholar

[5]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result,, Methods Appl. Anal., 16 (2009), 321.  doi: 10.4310/MAA.2009.v16.n3.a4.  Google Scholar

[6]

G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 679.   Google Scholar

[7]

E. Bouin and V. Calvez, A kinetic eikonal equation,, C. R. Math. Acad. Sci. Paris, 350 (2012), 243.  doi: 10.1016/j.crma.2012.03.009.  Google Scholar

[8]

, E. Bouin, V. Calvez, E. Grenier and G. Nadin,, work in progress., ().   Google Scholar

[9]

E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul and R. Voituriez, Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration,, C. R. Math. Acad. Sci. Paris, 350 (2012), 761.  doi: 10.1016/j.crma.2012.09.010.  Google Scholar

[10]

E. Bouin, V. Calvez and G. Nadin, Front propagation in a kinetic reaction-transport equation,, preprint, (2013).   Google Scholar

[11]

E. Bouin and S. Mirrahimi, A Hamilton-Jacobi approach for a model of population structured by space and trait,, preprint, (2013).   Google Scholar

[12]

R. E. Caflisch and B. Nicolaenko, Shock profile solutions of the Boltzmann equation,, Comm. Math. Phys., 86 (1982), 161.  doi: 10.1007/BF01206009.  Google Scholar

[13]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[14]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487.  doi: 10.1090/S0002-9947-1984-0732102-X.  Google Scholar

[15]

C. M. Cuesta, S. Hittmeir and Ch. Schmeiser, travelling waves of a kinetic transport model for the KPP-Fisher equation,, SIAM J. Math. Anal., 44 (2012), 4128.  doi: 10.1137/100795413.  Google Scholar

[16]

C. Cuesta and C. Schmeiser, Kinetic profiles for shock waves of scalar conservation laws,, Bull. of the Inst. of Math., 2 (2007), 391.   Google Scholar

[17]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.   Google Scholar

[18]

L. C. Evans, Partial Differential Equations,, Second edition, 19 (2010).   Google Scholar

[19]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,, Proc. R. Soc. Edinb. Sec. A, 111 (1989), 359.  doi: 10.1017/S0308210500018631.  Google Scholar

[20]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Univ. Math. J., 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[21]

S. Fedotov, travelling waves in a reaction-diffusion system: diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics,, Phys. Rev. E, 58 (1998), 5143.  doi: 10.1103/PhysRevE.58.5143.  Google Scholar

[22]

S. Fedotov, Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics,, Phys. Rev. E, 59 (1999), 5040.  doi: 10.1103/PhysRevE.59.5040.  Google Scholar

[23]

W. H. Fleming and P. E. Souganidis, PDE-viscosity solution approach to some problems of large deviations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1986), 171.   Google Scholar

[24]

M. Freidlin, Functional Integration and Partial Differential Equations,, Annals of Mathematics Studies, 109 (1985).   Google Scholar

[25]

F. Golse, Shock profiles for the Perthame-Tadmor kinetic model,, Comm. Partial Differential Equations, 23 (1998), 1857.   Google Scholar

[26]

A. Henkel, J. Müller and C. Pötzsche, Modeling the spread of Phytophthora,, J. Math. Biol., 65 (2012), 1359.  doi: 10.1007/s00285-011-0492-7.  Google Scholar

[27]

A. Kolmogorov, Über die Analytischen Methoden in der Wahrscheinlichkeitsrechnung,, (On Analytical Methods in the Theory of Probability), (1931).   Google Scholar

[28]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Moskow Univ. Math. Bull., 1 (1937), 1.   Google Scholar

[29]

M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space,, Amer. Math. Soc. Translation, 1950 (1950).   Google Scholar

[30]

T.-P. Liu and Shih-Hsien Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Comm. Math. Phys., 246 (2004), 133.  doi: 10.1007/s00220-003-1030-2.  Google Scholar

[31]

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Comm. Partial Differential Equations, 36 (2011), 1071.  doi: 10.1080/03605302.2010.538784.  Google Scholar

[32]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics, (2007).   Google Scholar

[33]

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a travelling concentration wave,, PNAS, 108 (2011), 16235.  doi: 10.1073/pnas.1101996108.  Google Scholar

[34]

P. E. Souganidis, Front propagation: Theory and applications,, in Viscosity Solutions and Applications (Montecatini Terme, (1995), 186.  doi: 10.1007/BFb0094298.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial Differential Equations and Related Topics, (1975), 5.   Google Scholar

[2]

C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size,, Trans. Amer. Math. Soc., 284 (1984), 617.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[3]

G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi,, Mathématiques & Applications (Berlin) [Mathematics & Applications], (1994).   Google Scholar

[4]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Math. J., 61 (1990), 835.  doi: 10.1215/S0012-7094-90-06132-0.  Google Scholar

[5]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result,, Methods Appl. Anal., 16 (2009), 321.  doi: 10.4310/MAA.2009.v16.n3.a4.  Google Scholar

[6]

G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 679.   Google Scholar

[7]

E. Bouin and V. Calvez, A kinetic eikonal equation,, C. R. Math. Acad. Sci. Paris, 350 (2012), 243.  doi: 10.1016/j.crma.2012.03.009.  Google Scholar

[8]

, E. Bouin, V. Calvez, E. Grenier and G. Nadin,, work in progress., ().   Google Scholar

[9]

E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul and R. Voituriez, Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration,, C. R. Math. Acad. Sci. Paris, 350 (2012), 761.  doi: 10.1016/j.crma.2012.09.010.  Google Scholar

[10]

E. Bouin, V. Calvez and G. Nadin, Front propagation in a kinetic reaction-transport equation,, preprint, (2013).   Google Scholar

[11]

E. Bouin and S. Mirrahimi, A Hamilton-Jacobi approach for a model of population structured by space and trait,, preprint, (2013).   Google Scholar

[12]

R. E. Caflisch and B. Nicolaenko, Shock profile solutions of the Boltzmann equation,, Comm. Math. Phys., 86 (1982), 161.  doi: 10.1007/BF01206009.  Google Scholar

[13]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[14]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487.  doi: 10.1090/S0002-9947-1984-0732102-X.  Google Scholar

[15]

C. M. Cuesta, S. Hittmeir and Ch. Schmeiser, travelling waves of a kinetic transport model for the KPP-Fisher equation,, SIAM J. Math. Anal., 44 (2012), 4128.  doi: 10.1137/100795413.  Google Scholar

[16]

C. Cuesta and C. Schmeiser, Kinetic profiles for shock waves of scalar conservation laws,, Bull. of the Inst. of Math., 2 (2007), 391.   Google Scholar

[17]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.   Google Scholar

[18]

L. C. Evans, Partial Differential Equations,, Second edition, 19 (2010).   Google Scholar

[19]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,, Proc. R. Soc. Edinb. Sec. A, 111 (1989), 359.  doi: 10.1017/S0308210500018631.  Google Scholar

[20]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Univ. Math. J., 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[21]

S. Fedotov, travelling waves in a reaction-diffusion system: diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics,, Phys. Rev. E, 58 (1998), 5143.  doi: 10.1103/PhysRevE.58.5143.  Google Scholar

[22]

S. Fedotov, Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics,, Phys. Rev. E, 59 (1999), 5040.  doi: 10.1103/PhysRevE.59.5040.  Google Scholar

[23]

W. H. Fleming and P. E. Souganidis, PDE-viscosity solution approach to some problems of large deviations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1986), 171.   Google Scholar

[24]

M. Freidlin, Functional Integration and Partial Differential Equations,, Annals of Mathematics Studies, 109 (1985).   Google Scholar

[25]

F. Golse, Shock profiles for the Perthame-Tadmor kinetic model,, Comm. Partial Differential Equations, 23 (1998), 1857.   Google Scholar

[26]

A. Henkel, J. Müller and C. Pötzsche, Modeling the spread of Phytophthora,, J. Math. Biol., 65 (2012), 1359.  doi: 10.1007/s00285-011-0492-7.  Google Scholar

[27]

A. Kolmogorov, Über die Analytischen Methoden in der Wahrscheinlichkeitsrechnung,, (On Analytical Methods in the Theory of Probability), (1931).   Google Scholar

[28]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Moskow Univ. Math. Bull., 1 (1937), 1.   Google Scholar

[29]

M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space,, Amer. Math. Soc. Translation, 1950 (1950).   Google Scholar

[30]

T.-P. Liu and Shih-Hsien Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Comm. Math. Phys., 246 (2004), 133.  doi: 10.1007/s00220-003-1030-2.  Google Scholar

[31]

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Comm. Partial Differential Equations, 36 (2011), 1071.  doi: 10.1080/03605302.2010.538784.  Google Scholar

[32]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics, (2007).   Google Scholar

[33]

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a travelling concentration wave,, PNAS, 108 (2011), 16235.  doi: 10.1073/pnas.1101996108.  Google Scholar

[34]

P. E. Souganidis, Front propagation: Theory and applications,, in Viscosity Solutions and Applications (Montecatini Terme, (1995), 186.  doi: 10.1007/BFb0094298.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[3]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]