March  2015, 8(1): 29-51. doi: 10.3934/krm.2015.8.29

Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type

1. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China, China

Received  August 2013 Revised  October 2013 Published  December 2014

In this paper, the non-isentropic compressible Navier-Stokes-Korteweg system with a time periodic external force is considered in $\mathbb{R}^n$. The optimal time decay rates are obtained by spectral analysis. Using the optimal decay estimates, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension $n\geq 5$. Our proof is based on a combination of the energy method and the contraction mapping theorem.
Citation: Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic & Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29
References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843. doi: 10.1081/PDE-120020499. Google Scholar

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations,, Nonlinear Anal., 72 (2010), 4438. doi: 10.1016/j.na.2010.02.019. Google Scholar

[3]

Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type,, preprint, (). Google Scholar

[4]

R. Danchi, Global existence in critical space for compressible Navier-Stokes equations,, Invent.math., 141 (2000), 579. doi: 10.1007/s002220000078. Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. H. Poincare Anal. Nonlinear, 18 (2001), 97. doi: 10.1016/S0294-1449(00)00056-1. Google Scholar

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications,, Comm. Math. Phys., 277 (2008), 189. doi: 10.1007/s00220-007-0366-4. Google Scholar

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223. doi: 10.1007/s00021-009-0013-2. Google Scholar

[8]

B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension,, Methods Appl. Anal., 20 (2013), 141. doi: 10.4310/MAA.2013.v20.n2.a3. Google Scholar

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type,, SIAM J. Math. Anal., 25 (1994), 85. doi: 10.1137/S003614109223413X. Google Scholar

[10]

H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84. doi: 10.1006/jmaa.1996.0069. Google Scholar

[11]

S. Kawashima, Systems of A Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, PhD thesis, (1983). Google Scholar

[12]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type,, Ann. Inst. H. Poincare Anal. Nonlinear, 25 (2008), 679. doi: 10.1016/j.anihpc.2007.03.005. Google Scholar

[13]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force,, J. Math. Anal. Appl., 388 (2012), 1218. doi: 10.1016/j.jmaa.2011.11.006. Google Scholar

[14]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275. doi: 10.1016/j.jde.2009.11.031. Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fuids,, Proc. Japan Acad. Ser. A, 55 (1979), 337. doi: 10.3792/pjaa.55.337. Google Scholar

[16]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[17]

Z. Tan and H. Q. wang, Time periodic solutions of compressible magnetohydrodynamic equations,, Nonlinear Anal., 76 (2013), 153. doi: 10.1016/j.na.2012.08.012. Google Scholar

[18]

Michael E. Taylor, Partial Differential Equations III,, Springer-Verlag, (1996). doi: 10.1007/978-1-4757-4187-2. Google Scholar

[19]

S. Ukai, Time periodic solutions of Boltzmann equation,, Discrete Contin. Dyn. Syst., 14 (2006), 579. doi: 10.3934/dcds.2006.14.579. Google Scholar

[20]

S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution,, Analysis and Applications, 4 (2006), 263. doi: 10.1142/S0219530506000784. Google Scholar

[21]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256. doi: 10.1016/j.jmaa.2011.01.006. Google Scholar

[22]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Journal of Differential Equations, 250 (2011), 866. doi: 10.1016/j.jde.2010.07.035. Google Scholar

[23]

X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbbR^3$,, Comm. Math. Sci., 12 (2014), 1437. doi: 10.4310/CMS.2014.v12.n8.a4. Google Scholar

show all references

References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843. doi: 10.1081/PDE-120020499. Google Scholar

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations,, Nonlinear Anal., 72 (2010), 4438. doi: 10.1016/j.na.2010.02.019. Google Scholar

[3]

Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type,, preprint, (). Google Scholar

[4]

R. Danchi, Global existence in critical space for compressible Navier-Stokes equations,, Invent.math., 141 (2000), 579. doi: 10.1007/s002220000078. Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. H. Poincare Anal. Nonlinear, 18 (2001), 97. doi: 10.1016/S0294-1449(00)00056-1. Google Scholar

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications,, Comm. Math. Phys., 277 (2008), 189. doi: 10.1007/s00220-007-0366-4. Google Scholar

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223. doi: 10.1007/s00021-009-0013-2. Google Scholar

[8]

B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension,, Methods Appl. Anal., 20 (2013), 141. doi: 10.4310/MAA.2013.v20.n2.a3. Google Scholar

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type,, SIAM J. Math. Anal., 25 (1994), 85. doi: 10.1137/S003614109223413X. Google Scholar

[10]

H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84. doi: 10.1006/jmaa.1996.0069. Google Scholar

[11]

S. Kawashima, Systems of A Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, PhD thesis, (1983). Google Scholar

[12]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type,, Ann. Inst. H. Poincare Anal. Nonlinear, 25 (2008), 679. doi: 10.1016/j.anihpc.2007.03.005. Google Scholar

[13]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force,, J. Math. Anal. Appl., 388 (2012), 1218. doi: 10.1016/j.jmaa.2011.11.006. Google Scholar

[14]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275. doi: 10.1016/j.jde.2009.11.031. Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fuids,, Proc. Japan Acad. Ser. A, 55 (1979), 337. doi: 10.3792/pjaa.55.337. Google Scholar

[16]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[17]

Z. Tan and H. Q. wang, Time periodic solutions of compressible magnetohydrodynamic equations,, Nonlinear Anal., 76 (2013), 153. doi: 10.1016/j.na.2012.08.012. Google Scholar

[18]

Michael E. Taylor, Partial Differential Equations III,, Springer-Verlag, (1996). doi: 10.1007/978-1-4757-4187-2. Google Scholar

[19]

S. Ukai, Time periodic solutions of Boltzmann equation,, Discrete Contin. Dyn. Syst., 14 (2006), 579. doi: 10.3934/dcds.2006.14.579. Google Scholar

[20]

S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution,, Analysis and Applications, 4 (2006), 263. doi: 10.1142/S0219530506000784. Google Scholar

[21]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256. doi: 10.1016/j.jmaa.2011.01.006. Google Scholar

[22]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Journal of Differential Equations, 250 (2011), 866. doi: 10.1016/j.jde.2010.07.035. Google Scholar

[23]

X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbbR^3$,, Comm. Math. Sci., 12 (2014), 1437. doi: 10.4310/CMS.2014.v12.n8.a4. Google Scholar

[1]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[2]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[3]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[4]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[5]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[6]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[7]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[8]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[9]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[10]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[11]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[12]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[13]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[14]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[15]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[16]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[17]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[18]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[19]

Jiang Xu, Wen-An Yong. Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1319-1332. doi: 10.3934/dcds.2009.25.1319

[20]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]