March  2015, 8(1): 29-51. doi: 10.3934/krm.2015.8.29

Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type

1. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China, China

Received  August 2013 Revised  October 2013 Published  December 2014

In this paper, the non-isentropic compressible Navier-Stokes-Korteweg system with a time periodic external force is considered in $\mathbb{R}^n$. The optimal time decay rates are obtained by spectral analysis. Using the optimal decay estimates, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension $n\geq 5$. Our proof is based on a combination of the energy method and the contraction mapping theorem.
Citation: Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic and Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29
References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations, Nonlinear Anal., 72 (2010), 4438-4451. doi: 10.1016/j.na.2010.02.019.

[3]

Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type, preprint, arXiv:1203.6529.

[4]

R. Danchi, Global existence in critical space for compressible Navier-Stokes equations, Invent.math., 141 (2000), 579-614. doi: 10.1007/s002220000078.

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincare Anal. Nonlinear, 18 (2001), 97-133. doi: 10.1016/S0294-1449(00)00056-1.

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236. doi: 10.1007/s00220-007-0366-4.

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249. doi: 10.1007/s00021-009-0013-2.

[8]

B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Methods Appl. Anal., 20 (2013), 141-164. arXiv:1211.4819. doi: 10.4310/MAA.2013.v20.n2.a3.

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98. doi: 10.1137/S003614109223413X.

[10]

H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069.

[11]

S. Kawashima, Systems of A Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, PhD thesis, Kyoto University, 1983.

[12]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincare Anal. Nonlinear, 25 (2008), 679-696. doi: 10.1016/j.anihpc.2007.03.005.

[13]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232. doi: 10.1016/j.jmaa.2011.11.006.

[14]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293. doi: 10.1016/j.jde.2009.11.031.

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fuids, Proc. Japan Acad. Ser. A, 55 (1979) , 337-342. doi: 10.3792/pjaa.55.337.

[16]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

[17]

Z. Tan and H. Q. wang, Time periodic solutions of compressible magnetohydrodynamic equations, Nonlinear Anal., 76 (2013), 153-164. doi: 10.1016/j.na.2012.08.012.

[18]

Michael E. Taylor, Partial Differential Equations III, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4757-4187-2.

[19]

S. Ukai, Time periodic solutions of Boltzmann equation, Discrete Contin. Dyn. Syst., 14 (2006), 579-596. doi: 10.3934/dcds.2006.14.579.

[20]

S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution, Analysis and Applications, 4 (2006), 263-310. doi: 10.1142/S0219530506000784.

[21]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271. doi: 10.1016/j.jmaa.2011.01.006.

[22]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^3$, Journal of Differential Equations, 250 (2011), 866-891. doi: 10.1016/j.jde.2010.07.035.

[23]

X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbb{R}^3$, Comm. Math. Sci., 12 (2014), 1437-1456. doi: 10.4310/CMS.2014.v12.n8.a4.

show all references

References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations, Nonlinear Anal., 72 (2010), 4438-4451. doi: 10.1016/j.na.2010.02.019.

[3]

Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type, preprint, arXiv:1203.6529.

[4]

R. Danchi, Global existence in critical space for compressible Navier-Stokes equations, Invent.math., 141 (2000), 579-614. doi: 10.1007/s002220000078.

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincare Anal. Nonlinear, 18 (2001), 97-133. doi: 10.1016/S0294-1449(00)00056-1.

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236. doi: 10.1007/s00220-007-0366-4.

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249. doi: 10.1007/s00021-009-0013-2.

[8]

B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Methods Appl. Anal., 20 (2013), 141-164. arXiv:1211.4819. doi: 10.4310/MAA.2013.v20.n2.a3.

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98. doi: 10.1137/S003614109223413X.

[10]

H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069.

[11]

S. Kawashima, Systems of A Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, PhD thesis, Kyoto University, 1983.

[12]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincare Anal. Nonlinear, 25 (2008), 679-696. doi: 10.1016/j.anihpc.2007.03.005.

[13]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232. doi: 10.1016/j.jmaa.2011.11.006.

[14]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293. doi: 10.1016/j.jde.2009.11.031.

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fuids, Proc. Japan Acad. Ser. A, 55 (1979) , 337-342. doi: 10.3792/pjaa.55.337.

[16]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

[17]

Z. Tan and H. Q. wang, Time periodic solutions of compressible magnetohydrodynamic equations, Nonlinear Anal., 76 (2013), 153-164. doi: 10.1016/j.na.2012.08.012.

[18]

Michael E. Taylor, Partial Differential Equations III, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4757-4187-2.

[19]

S. Ukai, Time periodic solutions of Boltzmann equation, Discrete Contin. Dyn. Syst., 14 (2006), 579-596. doi: 10.3934/dcds.2006.14.579.

[20]

S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution, Analysis and Applications, 4 (2006), 263-310. doi: 10.1142/S0219530506000784.

[21]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271. doi: 10.1016/j.jmaa.2011.01.006.

[22]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^3$, Journal of Differential Equations, 250 (2011), 866-891. doi: 10.1016/j.jde.2010.07.035.

[23]

X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbb{R}^3$, Comm. Math. Sci., 12 (2014), 1437-1456. doi: 10.4310/CMS.2014.v12.n8.a4.

[1]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[2]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[3]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[4]

Lvqiao liu, Lan Zhang. Optimal decay to the non-isentropic compressible micropolar fluids. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4575-4598. doi: 10.3934/cpaa.2020207

[5]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic and Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[6]

Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067

[7]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[8]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[9]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[10]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[11]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[12]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[13]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[14]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[15]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[16]

Yuhui Chen, Ronghua Pan, Leilei Tong. The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $. Electronic Research Archive, 2021, 29 (2) : 1945-1967. doi: 10.3934/era.2020099

[17]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[18]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[19]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[20]

Changchun Liu, Pingping Li. Time periodic solutions for a two-species chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4567-4585. doi: 10.3934/dcdsb.2020303

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]