June  2015, 8(2): 335-358. doi: 10.3934/krm.2015.8.335

Compressible Euler equations interacting with incompressible flow

1. 

Department of Mathematics, Imperial College London, London SW7 2AZ

Received  December 2014 Revised  January 2015 Published  March 2015

We investigate the global existence and large-time behavior of classical solutions to the compressible Euler equations coupled to the incompressible Navier-Stokes equations. The coupled hydrodynamic equations are rigorously derived in [1] as the hydrodynamic limit of the Vlasov/incompressible Navier-Stokes system with strong noise and local alignment. We prove the existence and uniqueness of global classical solutions of the coupled system under suitable assumptions. As a direct consequence of our result, we can conclude that the estimates of hydrodynamic limit studied in [1] hold for all time. For the large-time behavior of the classical solutions, we show that two fluid velocities will be aligned with each other exponentially fast as time evolves.
Citation: Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335
References:
[1]

J. A. Carrillo, Y.-P. Choi and T. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces,, to appear in Annales de lIHP-ANL., (). doi: 10.1016/j.anihpc.2014.10.002.

[2]

J. A. Carrillo, Y.-P. Choi, E. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with nonlocal forces,, preprint, (2014).

[3]

J. A. Carrillo, R. Duan and A. Moussa, Global classical solutions close to the equilibrium to the Vlasov-Fokker-Planck-Euler system,, Kinetic and Related Models, 4 (2011), 227. doi: 10.3934/krm.2011.4.227.

[4]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model,, Comm. Partial Differential Equations, 31 (2006), 1349. doi: 10.1080/03605300500394389.

[5]

G.-Q. Chen, Euler equations and related hyperbolic conservation laws,, in Handbook of Differential Equations, (2005), 1.

[6]

Y.-P. Choi, A revisit to the large-time behavior of the Vlasov/compressible Navier-Stokes equations,, preprint, (2014).

[7]

R. Duan and S. Liu, Cauchy problem on the Vlaosv-Fokker-Planck equation coupled with the compressible Euler equations through the friction force,, Kinetic and Related Models, 6 (2013), 687. doi: 10.3934/krm.2013.6.687.

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-5364-8.

[9]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime,, Indiana Univ. Math. J., 53 (2004), 1495. doi: 10.1512/iumj.2004.53.2508.

[10]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime,, Indiana Univ. Math. J., 53 (2004), 1517. doi: 10.1512/iumj.2004.53.2509.

[11]

T. Karper, A. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model,, Math. Mod. Meth. Appl. Sci., 25 (2015), 131. doi: 10.1142/S0218202515500050.

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Rational Mech. Anal., 58 (1975), 181. doi: 10.1007/BF00280740.

[13]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, (1984). doi: 10.1007/978-1-4612-1116-7.

[14]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations,, Math. Mod. Meth. Appl. Sci., 17 (2007), 1039. doi: 10.1142/S0218202507002194.

[15]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 573. doi: 10.1007/s00220-008-0523-4.

[16]

T. C. Sideris, B. Thomases and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping,, Comm. Partial Differential Equations, 28 (2003), 795. doi: 10.1081/PDE-120020497.

show all references

References:
[1]

J. A. Carrillo, Y.-P. Choi and T. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces,, to appear in Annales de lIHP-ANL., (). doi: 10.1016/j.anihpc.2014.10.002.

[2]

J. A. Carrillo, Y.-P. Choi, E. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with nonlocal forces,, preprint, (2014).

[3]

J. A. Carrillo, R. Duan and A. Moussa, Global classical solutions close to the equilibrium to the Vlasov-Fokker-Planck-Euler system,, Kinetic and Related Models, 4 (2011), 227. doi: 10.3934/krm.2011.4.227.

[4]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model,, Comm. Partial Differential Equations, 31 (2006), 1349. doi: 10.1080/03605300500394389.

[5]

G.-Q. Chen, Euler equations and related hyperbolic conservation laws,, in Handbook of Differential Equations, (2005), 1.

[6]

Y.-P. Choi, A revisit to the large-time behavior of the Vlasov/compressible Navier-Stokes equations,, preprint, (2014).

[7]

R. Duan and S. Liu, Cauchy problem on the Vlaosv-Fokker-Planck equation coupled with the compressible Euler equations through the friction force,, Kinetic and Related Models, 6 (2013), 687. doi: 10.3934/krm.2013.6.687.

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-5364-8.

[9]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime,, Indiana Univ. Math. J., 53 (2004), 1495. doi: 10.1512/iumj.2004.53.2508.

[10]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime,, Indiana Univ. Math. J., 53 (2004), 1517. doi: 10.1512/iumj.2004.53.2509.

[11]

T. Karper, A. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model,, Math. Mod. Meth. Appl. Sci., 25 (2015), 131. doi: 10.1142/S0218202515500050.

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Rational Mech. Anal., 58 (1975), 181. doi: 10.1007/BF00280740.

[13]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, (1984). doi: 10.1007/978-1-4612-1116-7.

[14]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations,, Math. Mod. Meth. Appl. Sci., 17 (2007), 1039. doi: 10.1142/S0218202507002194.

[15]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 573. doi: 10.1007/s00220-008-0523-4.

[16]

T. C. Sideris, B. Thomases and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping,, Comm. Partial Differential Equations, 28 (2003), 795. doi: 10.1081/PDE-120020497.

[1]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[2]

Feimin Huang, Yeping Li. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 455-470. doi: 10.3934/dcds.2009.24.455

[3]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[4]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[5]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[6]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[7]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[8]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018332

[9]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[10]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271

[11]

Adrian Constantin, Joachim Escher. Introduction to the special issue on hydrodynamic model equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : i-iii. doi: 10.3934/cpaa.2012.11.4i

[12]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[13]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[14]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019229

[15]

Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic & Related Models, 2012, 5 (3) : 537-550. doi: 10.3934/krm.2012.5.537

[16]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[17]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[18]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[19]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[20]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]