\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and diffusive limit of a two-species kinetic model of chemotaxis

Abstract Related Papers Cited by
  • In this paper, we propose a kinetic model describing the collective motion by chemotaxis of two species in interaction emitting the same chemoattractant. Such model can be seen as a generalisation to several species of the Othmer-Dunbar-Alt model which takes into account the run-and-tumble process of bacteria. Existence of weak solutions for this two-species kinetic model is studied and the convergence of its diffusive limit towards a macroscopic model of Keller-Segel type is analysed.
    Mathematics Subject Classification: 35K55, 45K05, 82C70, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692.doi: 10.1142/S0218202507002431.

    [2]

    N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci., 20 (2010), 1179-1207.doi: 10.1142/S0218202510004568.

    [3]

    N. Bournaveas, V. Calvez, S. Gutiérrez and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations, 33 (2008), 79-95.doi: 10.1080/03605300601188474.

    [4]

    H. Brezis, Analyse fonctionnelle, Théorie et Applications [Theory and Applications], Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983.

    [5]

    F. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141.doi: 10.1007/s00605-004-0234-7.

    [6]

    A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.doi: 10.3934/krm.2012.5.51.

    [7]

    C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$, European J. Appl. Math., 24 (2013), 297-313.doi: 10.1017/S0956792511000258.

    [8]

    M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), 2777-2808.doi: 10.1088/0951-7715/26/10/2777.

    [9]

    C. Di Russo, R. Natalini and M. Ribot, Global existence of smooth solutions to a two-dimensional hyperbolic model of chemotaxis, Commun. Appl. Ind. Math., 1 (2010), 92-109.

    [10]

    Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.doi: 10.1007/s00285-005-0334-6.

    [11]

    B. Elena and B. Howard, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 6 (1995), p376.

    [12]

    E. Espejo, K. Vilches and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbbR^2$, European J. Appl. Math., 24 (2013), 297-313.doi: 10.1017/S0956792512000411.

    [13]

    E. E. Espejo Arenas, A. Stevens and J. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), 317-338.doi: 10.1524/anly.2009.1029.

    [14]

    L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

    [15]

    A. Fasano, A. Mancini and M. Primicerio, Equilibruim of two populations subject to chemotaxis, Mathematical Models and Methods in Applied Sciences, 14 (2004), 503-533.doi: 10.1142/S0218202504003337.

    [16]

    F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.doi: 10.1007/s00285-004-0286-2.

    [17]

    J. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258.doi: 10.1090/S0002-9947-1987-0871674-4.

    [18]

    T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.doi: 10.1142/S0218202502002008.

    [19]

    T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433.doi: 10.1016/S0362-546X(99)00284-9.

    [20]

    T. Hofer, J. Sherratt and P. Maini, Dictyostelium discoideum: Cellular self-organization in an excitable biological medium, Proceedings of the Royal Society of London. Series B: Biological Sciences, 259 (1995), 249-257.doi: 10.1098/rspb.1995.0037.

    [21]

    D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.doi: 10.1007/s00332-010-9082-x.

    [22]

    B. Howard, E. coli in Motion, Biological and Medical Physics, Biomedical Engineering, Springer, 2004.

    [23]

    H. J. Hwang, K. Kang and A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal., 36 (2005), 1177-1199.doi: 10.1137/S0036141003431888.

    [24]

    H. J. Hwang, K. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 319-334.doi: 10.3934/dcdsb.2005.5.319.

    [25]

    F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 101-127.doi: 10.1007/s00030-012-0155-4.

    [26]

    E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [27]

    E. Keller and L. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.doi: 10.1016/0022-5193(71)90050-6.

    [28]

    A. Kurganov and M. Lukacova-Medvidova, Numerical study of two-species chemotaxis models, Discrete and Continuous Dynamical Systems. Series B, 19 (2014), 131-152.doi: 10.3934/dcdsb.2014.19.131.

    [29]

    T.-C. Lin and Z.-A. Wang, Development of traveling waves in an interacting two-species chemotaxis model, Discrete Continuous Dynamical Systems Series A, 34 (2014), 2907-2927.doi: 10.3934/dcds.2014.34.2907.

    [30]

    H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392.

    [31]

    S. Park, P. Wolanin, E. Yuzbashyan, H. Lin, N. Darnton, J. Stock, P. Silberzan and R. Austin, Influence of topology on bacterial social interaction, Proceedings of the National Academy of Sciences, 100 (2003), 13910-13915.doi: 10.1073/pnas.1935975100.

    [32]

    B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic, Appl. Math., 49 (2004), 539-564.doi: 10.1007/s10492-004-6431-9.

    [33]

    J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol., 6 (2010), e1000890, 12pp.doi: 10.1371/journal.pcbi.1000890.

    [34]

    J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave, Proceedings of the National Academy of Sciences, 108 (2011), 16235-16240.doi: 10.1073/pnas.1101996108.

    [35]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.

    [36]

    N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis, Kinet. Relat. Models, 3 (2010), 501-528.doi: 10.3934/krm.2010.3.501.

    [37]

    G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math., 13 (2002), 641-661.doi: 10.1017/S0956792501004843.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return