Citation: |
[1] |
N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692.doi: 10.1142/S0218202507002431. |
[2] |
N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci., 20 (2010), 1179-1207.doi: 10.1142/S0218202510004568. |
[3] |
N. Bournaveas, V. Calvez, S. Gutiérrez and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations, 33 (2008), 79-95.doi: 10.1080/03605300601188474. |
[4] |
H. Brezis, Analyse fonctionnelle, Théorie et Applications [Theory and Applications], Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983. |
[5] |
F. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141.doi: 10.1007/s00605-004-0234-7. |
[6] |
A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.doi: 10.3934/krm.2012.5.51. |
[7] |
C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$, European J. Appl. Math., 24 (2013), 297-313.doi: 10.1017/S0956792511000258. |
[8] |
M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), 2777-2808.doi: 10.1088/0951-7715/26/10/2777. |
[9] |
C. Di Russo, R. Natalini and M. Ribot, Global existence of smooth solutions to a two-dimensional hyperbolic model of chemotaxis, Commun. Appl. Ind. Math., 1 (2010), 92-109. |
[10] |
Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.doi: 10.1007/s00285-005-0334-6. |
[11] |
B. Elena and B. Howard, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 6 (1995), p376. |
[12] |
E. Espejo, K. Vilches and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbbR^2$, European J. Appl. Math., 24 (2013), 297-313.doi: 10.1017/S0956792512000411. |
[13] |
E. E. Espejo Arenas, A. Stevens and J. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), 317-338.doi: 10.1524/anly.2009.1029. |
[14] |
L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998. |
[15] |
A. Fasano, A. Mancini and M. Primicerio, Equilibruim of two populations subject to chemotaxis, Mathematical Models and Methods in Applied Sciences, 14 (2004), 503-533.doi: 10.1142/S0218202504003337. |
[16] |
F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.doi: 10.1007/s00285-004-0286-2. |
[17] |
J. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258.doi: 10.1090/S0002-9947-1987-0871674-4. |
[18] |
T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.doi: 10.1142/S0218202502002008. |
[19] |
T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433.doi: 10.1016/S0362-546X(99)00284-9. |
[20] |
T. Hofer, J. Sherratt and P. Maini, Dictyostelium discoideum: Cellular self-organization in an excitable biological medium, Proceedings of the Royal Society of London. Series B: Biological Sciences, 259 (1995), 249-257.doi: 10.1098/rspb.1995.0037. |
[21] |
D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.doi: 10.1007/s00332-010-9082-x. |
[22] |
B. Howard, E. coli in Motion, Biological and Medical Physics, Biomedical Engineering, Springer, 2004. |
[23] |
H. J. Hwang, K. Kang and A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal., 36 (2005), 1177-1199.doi: 10.1137/S0036141003431888. |
[24] |
H. J. Hwang, K. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 319-334.doi: 10.3934/dcdsb.2005.5.319. |
[25] |
F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 101-127.doi: 10.1007/s00030-012-0155-4. |
[26] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[27] |
E. Keller and L. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.doi: 10.1016/0022-5193(71)90050-6. |
[28] |
A. Kurganov and M. Lukacova-Medvidova, Numerical study of two-species chemotaxis models, Discrete and Continuous Dynamical Systems. Series B, 19 (2014), 131-152.doi: 10.3934/dcdsb.2014.19.131. |
[29] |
T.-C. Lin and Z.-A. Wang, Development of traveling waves in an interacting two-species chemotaxis model, Discrete Continuous Dynamical Systems Series A, 34 (2014), 2907-2927.doi: 10.3934/dcds.2014.34.2907. |
[30] |
H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392. |
[31] |
S. Park, P. Wolanin, E. Yuzbashyan, H. Lin, N. Darnton, J. Stock, P. Silberzan and R. Austin, Influence of topology on bacterial social interaction, Proceedings of the National Academy of Sciences, 100 (2003), 13910-13915.doi: 10.1073/pnas.1935975100. |
[32] |
B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic, Appl. Math., 49 (2004), 539-564.doi: 10.1007/s10492-004-6431-9. |
[33] |
J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol., 6 (2010), e1000890, 12pp.doi: 10.1371/journal.pcbi.1000890. |
[34] |
J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave, Proceedings of the National Academy of Sciences, 108 (2011), 16235-16240.doi: 10.1073/pnas.1101996108. |
[35] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[36] |
N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis, Kinet. Relat. Models, 3 (2010), 501-528.doi: 10.3934/krm.2010.3.501. |
[37] |
G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math., 13 (2002), 641-661.doi: 10.1017/S0956792501004843. |