Advanced Search
Article Contents
Article Contents

Existence and diffusive limit of a two-species kinetic model of chemotaxis

Abstract Related Papers Cited by
  • In this paper, we propose a kinetic model describing the collective motion by chemotaxis of two species in interaction emitting the same chemoattractant. Such model can be seen as a generalisation to several species of the Othmer-Dunbar-Alt model which takes into account the run-and-tumble process of bacteria. Existence of weak solutions for this two-species kinetic model is studied and the convergence of its diffusive limit towards a macroscopic model of Keller-Segel type is analysed.
    Mathematics Subject Classification: 35K55, 45K05, 82C70, 92C17.


    \begin{equation} \\ \end{equation}
  • [1]

    N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692.doi: 10.1142/S0218202507002431.


    N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci., 20 (2010), 1179-1207.doi: 10.1142/S0218202510004568.


    N. Bournaveas, V. Calvez, S. Gutiérrez and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations, 33 (2008), 79-95.doi: 10.1080/03605300601188474.


    H. Brezis, Analyse fonctionnelle, Théorie et Applications [Theory and Applications], Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983.


    F. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141.doi: 10.1007/s00605-004-0234-7.


    A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.doi: 10.3934/krm.2012.5.51.


    C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$, European J. Appl. Math., 24 (2013), 297-313.doi: 10.1017/S0956792511000258.


    M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), 2777-2808.doi: 10.1088/0951-7715/26/10/2777.


    C. Di Russo, R. Natalini and M. Ribot, Global existence of smooth solutions to a two-dimensional hyperbolic model of chemotaxis, Commun. Appl. Ind. Math., 1 (2010), 92-109.


    Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.doi: 10.1007/s00285-005-0334-6.


    B. Elena and B. Howard, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 6 (1995), p376.


    E. Espejo, K. Vilches and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbbR^2$, European J. Appl. Math., 24 (2013), 297-313.doi: 10.1017/S0956792512000411.


    E. E. Espejo Arenas, A. Stevens and J. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), 317-338.doi: 10.1524/anly.2009.1029.


    L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.


    A. Fasano, A. Mancini and M. Primicerio, Equilibruim of two populations subject to chemotaxis, Mathematical Models and Methods in Applied Sciences, 14 (2004), 503-533.doi: 10.1142/S0218202504003337.


    F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.doi: 10.1007/s00285-004-0286-2.


    J. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258.doi: 10.1090/S0002-9947-1987-0871674-4.


    T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.doi: 10.1142/S0218202502002008.


    T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433.doi: 10.1016/S0362-546X(99)00284-9.


    T. Hofer, J. Sherratt and P. Maini, Dictyostelium discoideum: Cellular self-organization in an excitable biological medium, Proceedings of the Royal Society of London. Series B: Biological Sciences, 259 (1995), 249-257.doi: 10.1098/rspb.1995.0037.


    D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.doi: 10.1007/s00332-010-9082-x.


    B. Howard, E. coli in Motion, Biological and Medical Physics, Biomedical Engineering, Springer, 2004.


    H. J. Hwang, K. Kang and A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal., 36 (2005), 1177-1199.doi: 10.1137/S0036141003431888.


    H. J. Hwang, K. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 319-334.doi: 10.3934/dcdsb.2005.5.319.


    F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 101-127.doi: 10.1007/s00030-012-0155-4.


    E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.


    E. Keller and L. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.doi: 10.1016/0022-5193(71)90050-6.


    A. Kurganov and M. Lukacova-Medvidova, Numerical study of two-species chemotaxis models, Discrete and Continuous Dynamical Systems. Series B, 19 (2014), 131-152.doi: 10.3934/dcdsb.2014.19.131.


    T.-C. Lin and Z.-A. Wang, Development of traveling waves in an interacting two-species chemotaxis model, Discrete Continuous Dynamical Systems Series A, 34 (2014), 2907-2927.doi: 10.3934/dcds.2014.34.2907.


    H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392.


    S. Park, P. Wolanin, E. Yuzbashyan, H. Lin, N. Darnton, J. Stock, P. Silberzan and R. Austin, Influence of topology on bacterial social interaction, Proceedings of the National Academy of Sciences, 100 (2003), 13910-13915.doi: 10.1073/pnas.1935975100.


    B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic, Appl. Math., 49 (2004), 539-564.doi: 10.1007/s10492-004-6431-9.


    J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol., 6 (2010), e1000890, 12pp.doi: 10.1371/journal.pcbi.1000890.


    J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave, Proceedings of the National Academy of Sciences, 108 (2011), 16235-16240.doi: 10.1073/pnas.1101996108.


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.


    N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis, Kinet. Relat. Models, 3 (2010), 501-528.doi: 10.3934/krm.2010.3.501.


    G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math., 13 (2002), 641-661.doi: 10.1017/S0956792501004843.

  • 加载中

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint