June  2015, 8(2): 381-394. doi: 10.3934/krm.2015.8.381

Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support

1. 

Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, D-95440 Bayreuth, Germany

Received  September 2014 Revised  November 2014 Published  March 2015

We consider a self-gravitating collisionless gas where the gravitational interaction is modeled according to MOND (modified Newtonian dynamics). For the resulting modified Vlasov-Poisson system we establish the existence of spherically symmetric equilibria with compact support and finite mass. In the standard situation where gravity is modeled by Newton's law the latter properties only hold under suitable restrictions on the prescribed microscopic equation of state. Under the MOND regime no such restrictions are needed.
Citation: Gerhard Rein. Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support. Kinetic & Related Models, 2015, 8 (2) : 381-394. doi: 10.3934/krm.2015.8.381
References:
[1]

J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics,, Arch. Rational Mech. Anal., 93 (1986), 159.  doi: 10.1007/BF00279958.  Google Scholar

[2]

J. Binney and S. Tremaine, Galactic Dynamics,, Princeton University Press, (1987).  doi: 10.1063/1.2811635.  Google Scholar

[3]

B. Famaey and S. McGaugh, Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions,, Living Rev. Relativity, 15 (2012).  doi: 10.12942/lrr-2012-10.  Google Scholar

[4]

Y. Guo and G. Rein, Stable steady states in stellar dynamics,, Arch. Rational Mech. Anal., 147 (1999), 225.  doi: 10.1007/s002050050150.  Google Scholar

[5]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model,, Commun. Math. Phys., 271 (2007), 489.  doi: 10.1007/s00220-007-0212-8.  Google Scholar

[6]

M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models,, Invent. math., 187 (2012), 145.  doi: 10.1007/s00222-011-0332-9.  Google Scholar

[7]

M. Milgrom, Light and dark in the universe, preprint,, , ().   Google Scholar

[8]

M. Milgrom, The MOND paradigm, preprint,, , ().   Google Scholar

[9]

M. Milgrom, Quasi-linear formulation of MOND,, Mon. Not. R. Astron. Soc., 403 (2010), 886.  doi: 10.1111/j.1365-2966.2009.16184.x.  Google Scholar

[10]

M. Núñez, On the gravitational potential of modified Newtonian dynamics,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4817858.  Google Scholar

[11]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case-A simple proof for finite extension,, SIAM J. Math. Anal., 45 (2013), 900.  doi: 10.1137/120896712.  Google Scholar

[12]

G. Rein, Collisionless kinetic equations from astrophysics-The Vlasov-Poisson system,, in Handbook of Differential Equations, (2007), 383.  doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[13]

G. Rein and A. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics,, Math. Proc. Camb.\Phil. Soc., 128 (2000), 363.  doi: 10.1017/S0305004199004193.  Google Scholar

[14]

J. Schaeffer, A class of counterexamples to Jeans' Theorem for the Vlasov-Einstein system,, Commun. Math. Phys., 204 (1999), 313.  doi: 10.1007/s002200050647.  Google Scholar

show all references

References:
[1]

J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics,, Arch. Rational Mech. Anal., 93 (1986), 159.  doi: 10.1007/BF00279958.  Google Scholar

[2]

J. Binney and S. Tremaine, Galactic Dynamics,, Princeton University Press, (1987).  doi: 10.1063/1.2811635.  Google Scholar

[3]

B. Famaey and S. McGaugh, Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions,, Living Rev. Relativity, 15 (2012).  doi: 10.12942/lrr-2012-10.  Google Scholar

[4]

Y. Guo and G. Rein, Stable steady states in stellar dynamics,, Arch. Rational Mech. Anal., 147 (1999), 225.  doi: 10.1007/s002050050150.  Google Scholar

[5]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model,, Commun. Math. Phys., 271 (2007), 489.  doi: 10.1007/s00220-007-0212-8.  Google Scholar

[6]

M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models,, Invent. math., 187 (2012), 145.  doi: 10.1007/s00222-011-0332-9.  Google Scholar

[7]

M. Milgrom, Light and dark in the universe, preprint,, , ().   Google Scholar

[8]

M. Milgrom, The MOND paradigm, preprint,, , ().   Google Scholar

[9]

M. Milgrom, Quasi-linear formulation of MOND,, Mon. Not. R. Astron. Soc., 403 (2010), 886.  doi: 10.1111/j.1365-2966.2009.16184.x.  Google Scholar

[10]

M. Núñez, On the gravitational potential of modified Newtonian dynamics,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4817858.  Google Scholar

[11]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case-A simple proof for finite extension,, SIAM J. Math. Anal., 45 (2013), 900.  doi: 10.1137/120896712.  Google Scholar

[12]

G. Rein, Collisionless kinetic equations from astrophysics-The Vlasov-Poisson system,, in Handbook of Differential Equations, (2007), 383.  doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[13]

G. Rein and A. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics,, Math. Proc. Camb.\Phil. Soc., 128 (2000), 363.  doi: 10.1017/S0305004199004193.  Google Scholar

[14]

J. Schaeffer, A class of counterexamples to Jeans' Theorem for the Vlasov-Einstein system,, Commun. Math. Phys., 204 (1999), 313.  doi: 10.1007/s002200050647.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[16]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]