- Previous Article
- KRM Home
- This Issue
-
Next Article
Existence and diffusive limit of a two-species kinetic model of chemotaxis
Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support
1. | Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, D-95440 Bayreuth, Germany |
References:
[1] |
J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics,, Arch. Rational Mech. Anal., 93 (1986), 159.
doi: 10.1007/BF00279958. |
[2] |
J. Binney and S. Tremaine, Galactic Dynamics,, Princeton University Press, (1987).
doi: 10.1063/1.2811635. |
[3] |
B. Famaey and S. McGaugh, Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions,, Living Rev. Relativity, 15 (2012).
doi: 10.12942/lrr-2012-10. |
[4] |
Y. Guo and G. Rein, Stable steady states in stellar dynamics,, Arch. Rational Mech. Anal., 147 (1999), 225.
doi: 10.1007/s002050050150. |
[5] |
Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model,, Commun. Math. Phys., 271 (2007), 489.
doi: 10.1007/s00220-007-0212-8. |
[6] |
M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models,, Invent. math., 187 (2012), 145.
doi: 10.1007/s00222-011-0332-9. |
[7] |
M. Milgrom, Light and dark in the universe, preprint,, , (). Google Scholar |
[8] |
M. Milgrom, The MOND paradigm, preprint,, , (). Google Scholar |
[9] |
M. Milgrom, Quasi-linear formulation of MOND,, Mon. Not. R. Astron. Soc., 403 (2010), 886.
doi: 10.1111/j.1365-2966.2009.16184.x. |
[10] |
M. Núñez, On the gravitational potential of modified Newtonian dynamics,, J. Math. Phys., 54 (2013).
doi: 10.1063/1.4817858. |
[11] |
T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case-A simple proof for finite extension,, SIAM J. Math. Anal., 45 (2013), 900.
doi: 10.1137/120896712. |
[12] |
G. Rein, Collisionless kinetic equations from astrophysics-The Vlasov-Poisson system,, in Handbook of Differential Equations, (2007), 383.
doi: 10.1016/S1874-5717(07)80008-9. |
[13] |
G. Rein and A. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics,, Math. Proc. Camb.\Phil. Soc., 128 (2000), 363.
doi: 10.1017/S0305004199004193. |
[14] |
J. Schaeffer, A class of counterexamples to Jeans' Theorem for the Vlasov-Einstein system,, Commun. Math. Phys., 204 (1999), 313.
doi: 10.1007/s002200050647. |
show all references
References:
[1] |
J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics,, Arch. Rational Mech. Anal., 93 (1986), 159.
doi: 10.1007/BF00279958. |
[2] |
J. Binney and S. Tremaine, Galactic Dynamics,, Princeton University Press, (1987).
doi: 10.1063/1.2811635. |
[3] |
B. Famaey and S. McGaugh, Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions,, Living Rev. Relativity, 15 (2012).
doi: 10.12942/lrr-2012-10. |
[4] |
Y. Guo and G. Rein, Stable steady states in stellar dynamics,, Arch. Rational Mech. Anal., 147 (1999), 225.
doi: 10.1007/s002050050150. |
[5] |
Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model,, Commun. Math. Phys., 271 (2007), 489.
doi: 10.1007/s00220-007-0212-8. |
[6] |
M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models,, Invent. math., 187 (2012), 145.
doi: 10.1007/s00222-011-0332-9. |
[7] |
M. Milgrom, Light and dark in the universe, preprint,, , (). Google Scholar |
[8] |
M. Milgrom, The MOND paradigm, preprint,, , (). Google Scholar |
[9] |
M. Milgrom, Quasi-linear formulation of MOND,, Mon. Not. R. Astron. Soc., 403 (2010), 886.
doi: 10.1111/j.1365-2966.2009.16184.x. |
[10] |
M. Núñez, On the gravitational potential of modified Newtonian dynamics,, J. Math. Phys., 54 (2013).
doi: 10.1063/1.4817858. |
[11] |
T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case-A simple proof for finite extension,, SIAM J. Math. Anal., 45 (2013), 900.
doi: 10.1137/120896712. |
[12] |
G. Rein, Collisionless kinetic equations from astrophysics-The Vlasov-Poisson system,, in Handbook of Differential Equations, (2007), 383.
doi: 10.1016/S1874-5717(07)80008-9. |
[13] |
G. Rein and A. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics,, Math. Proc. Camb.\Phil. Soc., 128 (2000), 363.
doi: 10.1017/S0305004199004193. |
[14] |
J. Schaeffer, A class of counterexamples to Jeans' Theorem for the Vlasov-Einstein system,, Commun. Math. Phys., 204 (1999), 313.
doi: 10.1007/s002200050647. |
[1] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[2] |
Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Dynamics of a tethered satellite with variable mass. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1035-1045. doi: 10.3934/dcdss.2015.8.1035 |
[3] |
Yuncheng You. Asymptotical dynamics of the modified Schnackenberg equations. Conference Publications, 2009, 2009 (Special) : 857-868. doi: 10.3934/proc.2009.2009.857 |
[4] |
Carmen Cortázar, Manuel Elgueta, Jorge García-Melián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1409-1419. doi: 10.3934/dcds.2015.35.1409 |
[5] |
Alexander Kemarsky, Frédéric Paulin, Uri Shapira. Escape of mass in homogeneous dynamics in positive characteristic. Journal of Modern Dynamics, 2017, 11: 369-407. doi: 10.3934/jmd.2017015 |
[6] |
Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214 |
[7] |
Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky. Glauber dynamics in continuum: A constructive approach to evolution of states. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1431-1450. doi: 10.3934/dcds.2013.33.1431 |
[8] |
Monika Joanna Piotrowska, Joanna Górecka, Urszula Foryś. The role of optimism and pessimism in the dynamics of emotional states. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 401-423. doi: 10.3934/dcdsb.2018028 |
[9] |
Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics & Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005 |
[10] |
Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463 |
[11] |
Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 475-502. doi: 10.3934/mbe.2011.8.475 |
[12] |
Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015 |
[13] |
Katherine A. Newhall, Gregor Kovačič, Ildar Gabitov. Polarization dynamics in a resonant optical medium with initial coherence between degenerate states. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020189 |
[14] |
Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57 |
[15] |
Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483 |
[16] |
Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823 |
[17] |
Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155 |
[18] |
Viktor I. Gerasimenko, Igor V. Gapyak. Hard sphere dynamics and the Enskog equation. Kinetic & Related Models, 2012, 5 (3) : 459-484. doi: 10.3934/krm.2012.5.459 |
[19] |
Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283 |
[20] |
Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024 |
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]