September  2015, 8(3): 395-411. doi: 10.3934/krm.2015.8.395

On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces

1. 

School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, China, China

2. 

Department of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China

Received  March 2014 Revised  December 2014 Published  June 2015

This paper is devoted to the study of the inviscid Boussinesq equations. We establish the local well-posedness and blow-up criteria in Besov-Morrey spaces $N_{p,q,r}^s(\mathbb{R}^n)$ for super critical case $s > 1 + \frac{n}{p}, 1 < q \leq p < \infty, 1 \leq r\leq \infty$, and critical case $s=1+\frac{n}{p}, 1 < q \leq p < \infty, r=1$. Main analysis tools are Littlewood-Paley decomposition and the paradifferential calculus.
Citation: Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic and Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

H. Berestycki, P. Constantin and L. Ryzhik, Non-planar fronts in Boussinesq reactive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 407-437. doi: 10.1016/j.anihpc.2004.10.010.

[3]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976.

[4]

Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., 19 (2009), 547-570. doi: 10.1007/s00332-009-9044-3.

[5]

D. Chae, S.-K. Kim and H.-S. Nam, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55-80.

[6]

D. Chae and H. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935-946. doi: 10.1017/S0308210500026810.

[7]

X. Cui, C. Dou and Q. Jiu, Local well-posedness and blow up criterion for the inviscid Boussinesq system in Hölder spaces, J. Partial Differ. Equ., 25 (2012), 220-238.

[8]

W. E and C. Shu, Small scale structures on Boussinesq convection, Phys. Fluids, 6 (1994), 49-58. doi: 10.1063/1.868044.

[9]

B. Guo, Spectral method for solving two-dimensional Newton-Boussinesq equation, Acta Math. Appl. Sinica (English Ser.), 5 (1989), 201-218. doi: 10.1007/BF02006004.

[10]

H. Kozoho and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data, Comm. Partial Differential Equations, 19 (1994), 959-1014. doi: 10.1080/03605309408821042.

[11]

P. G. Lemarié-Rieusset, Recent Progress in the Navier-Stokes Problem, Chapman and Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.

[12]

X. Liu, M. Wang and Z. Zhang, Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces, J. Math. Fluid Mech., 12 (2010), 280-292. doi: 10.1007/s00021-008-0286-x.

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.

[14]

L. Tang, A remark on the well-posedness of the Euler equation in the Besov-Morrey space,, Available from: , (). 

[15]

Y. Taniuchi, A note on the blow-up criterion for the inviscid 2D Boussinesq equations, Lecture Notes in Pure and Appl. Math., 223 (2002), 131-140.

[16]

Z. Xiang and W. Yan, On the well-posedness of the Boussinesq equation in the Triebel-Lizorkin-Lorentz spaces, Abstr. Appl. Anal., 2012 (2012), Art. ID 573087, 17 pp.

[17]

X. Xu, Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms, Discrete Contin. Dyn. Syst., 25 (2009), 1333-1347. doi: 10.3934/dcds.2009.25.1333.

[18]

J. Xu and Y. Zhou, Commutator estimates in Besov-Morrey spaces with applications to the well-posedness of the Euler equations and ideal MHD system,, preprint, (). 

[19]

B. Yuan, Local existence and continuity conditions of solutions to the Boussinesq equations in Besov spaces, Acta Math. Sinica (Chin. Ser.), 53 (2010), 455-468.

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

H. Berestycki, P. Constantin and L. Ryzhik, Non-planar fronts in Boussinesq reactive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 407-437. doi: 10.1016/j.anihpc.2004.10.010.

[3]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976.

[4]

Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., 19 (2009), 547-570. doi: 10.1007/s00332-009-9044-3.

[5]

D. Chae, S.-K. Kim and H.-S. Nam, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55-80.

[6]

D. Chae and H. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935-946. doi: 10.1017/S0308210500026810.

[7]

X. Cui, C. Dou and Q. Jiu, Local well-posedness and blow up criterion for the inviscid Boussinesq system in Hölder spaces, J. Partial Differ. Equ., 25 (2012), 220-238.

[8]

W. E and C. Shu, Small scale structures on Boussinesq convection, Phys. Fluids, 6 (1994), 49-58. doi: 10.1063/1.868044.

[9]

B. Guo, Spectral method for solving two-dimensional Newton-Boussinesq equation, Acta Math. Appl. Sinica (English Ser.), 5 (1989), 201-218. doi: 10.1007/BF02006004.

[10]

H. Kozoho and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data, Comm. Partial Differential Equations, 19 (1994), 959-1014. doi: 10.1080/03605309408821042.

[11]

P. G. Lemarié-Rieusset, Recent Progress in the Navier-Stokes Problem, Chapman and Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.

[12]

X. Liu, M. Wang and Z. Zhang, Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces, J. Math. Fluid Mech., 12 (2010), 280-292. doi: 10.1007/s00021-008-0286-x.

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.

[14]

L. Tang, A remark on the well-posedness of the Euler equation in the Besov-Morrey space,, Available from: , (). 

[15]

Y. Taniuchi, A note on the blow-up criterion for the inviscid 2D Boussinesq equations, Lecture Notes in Pure and Appl. Math., 223 (2002), 131-140.

[16]

Z. Xiang and W. Yan, On the well-posedness of the Boussinesq equation in the Triebel-Lizorkin-Lorentz spaces, Abstr. Appl. Anal., 2012 (2012), Art. ID 573087, 17 pp.

[17]

X. Xu, Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms, Discrete Contin. Dyn. Syst., 25 (2009), 1333-1347. doi: 10.3934/dcds.2009.25.1333.

[18]

J. Xu and Y. Zhou, Commutator estimates in Besov-Morrey spaces with applications to the well-posedness of the Euler equations and ideal MHD system,, preprint, (). 

[19]

B. Yuan, Local existence and continuity conditions of solutions to the Boussinesq equations in Besov spaces, Acta Math. Sinica (Chin. Ser.), 53 (2010), 455-468.

[1]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[2]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[3]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[4]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[5]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[6]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[7]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[8]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations and Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[9]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[10]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[11]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[12]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[13]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[14]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[15]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[16]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[17]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[18]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[19]

Aiting Le, Chenyin Qian. Smoothing effect and well-posedness for 2D Boussinesq equations in critical Sobolev space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022057

[20]

Alex M. Montes, Ricardo Córdoba. Local well-posedness for a class of 1D Boussinesq systems. Mathematical Control and Related Fields, 2022, 12 (2) : 447-473. doi: 10.3934/mcrf.2021030

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (132)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]