September  2015, 8(3): 443-465. doi: 10.3934/krm.2015.8.443

On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation

1. 

Department of Mathematics, University of Rochester, Rochester, NY 14627, United States

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02912

Received  December 2014 Revised  February 2015 Published  June 2015

The rigorous derivation of the Uehling-Uhlenbeck equation from more fundamental quantum many-particle systems is a challenging open problem in mathematics. In this paper, we exam the weak coupling limit of quantum $N$ -particle dynamics. We assume the integral of the microscopic interaction is zero and we assume $W^{4,1}$ per-particle regularity on the coressponding BBGKY sequence so that we can rigorously commute limits and integrals. We prove that, if the BBGKY sequence does converge in some weak sense, then this weak-coupling limit must satisfy the infinite quantum Maxwell-Boltzmann hierarchy instead of the expected infinite Uehling-Uhlenbeck hierarchy, regardless of the statistics the particles obey. Our result indicates that, in order to derive the Uehling-Uhlenbeck equation, one must work with per-particle regularity bound below $W^{4,1}$.
Citation: Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic and Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443
References:
[1]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation, J. Stat. Phys., 116 (2004), 381-410. doi: 10.1023/B:JOSS.0000037205.09518.3f.

[2]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811-1843. doi: 10.1142/S0218202505000984.

[3]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime, Commun. Math. Phys., 277 (2008), 1-44. doi: 10.1007/s00220-007-0347-7.

[4]

L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation, J. Stat. Phys., 116 (2004), 367-380. doi: 10.1023/B:JOSS.0000037224.56191.ed.

[5]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.

[6]

F. King, BBGKY Hierarchy for Positive Potentials, Ph.D thesis, Univ. California, Berkley, 1975.

[7]

O. E. Lanford III, Time Evolution of Large Classical Systems, Lecture Notes in Physics, 38 (1975), 1-111.

[8]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933), 552-561. doi: 10.1103/PhysRev.43.552.

show all references

References:
[1]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation, J. Stat. Phys., 116 (2004), 381-410. doi: 10.1023/B:JOSS.0000037205.09518.3f.

[2]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811-1843. doi: 10.1142/S0218202505000984.

[3]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime, Commun. Math. Phys., 277 (2008), 1-44. doi: 10.1007/s00220-007-0347-7.

[4]

L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation, J. Stat. Phys., 116 (2004), 367-380. doi: 10.1023/B:JOSS.0000037224.56191.ed.

[5]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.

[6]

F. King, BBGKY Hierarchy for Positive Potentials, Ph.D thesis, Univ. California, Berkley, 1975.

[7]

O. E. Lanford III, Time Evolution of Large Classical Systems, Lecture Notes in Physics, 38 (1975), 1-111.

[8]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933), 552-561. doi: 10.1103/PhysRev.43.552.

[1]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic and Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[2]

Jianjun Yuan. Derivation of the Quintic NLS from many-body quantum dynamics in $T^2$. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1941-1960. doi: 10.3934/cpaa.2015.14.1941

[3]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic and Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[4]

Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292

[5]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[7]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[8]

Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061

[9]

Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4001-4038. doi: 10.3934/dcdsb.2020135

[10]

Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic and Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015

[11]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic and Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[12]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[13]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[14]

Toshihiro Iwai, Dmitrií A. Sadovskií, Boris I. Zhilinskií. Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries. Journal of Geometric Mechanics, 2020, 12 (3) : 455-505. doi: 10.3934/jgm.2020021

[15]

Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239

[16]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[17]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[18]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic and Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[19]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[20]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]