September  2015, 8(3): 443-465. doi: 10.3934/krm.2015.8.443

On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation

1. 

Department of Mathematics, University of Rochester, Rochester, NY 14627, United States

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02912

Received  December 2014 Revised  February 2015 Published  June 2015

The rigorous derivation of the Uehling-Uhlenbeck equation from more fundamental quantum many-particle systems is a challenging open problem in mathematics. In this paper, we exam the weak coupling limit of quantum $N$ -particle dynamics. We assume the integral of the microscopic interaction is zero and we assume $W^{4,1}$ per-particle regularity on the coressponding BBGKY sequence so that we can rigorously commute limits and integrals. We prove that, if the BBGKY sequence does converge in some weak sense, then this weak-coupling limit must satisfy the infinite quantum Maxwell-Boltzmann hierarchy instead of the expected infinite Uehling-Uhlenbeck hierarchy, regardless of the statistics the particles obey. Our result indicates that, in order to derive the Uehling-Uhlenbeck equation, one must work with per-particle regularity bound below $W^{4,1}$.
Citation: Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443
References:
[1]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation,, J. Stat. Phys., 116 (2004), 381.  doi: 10.1023/B:JOSS.0000037205.09518.3f.  Google Scholar

[2]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions,, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811.  doi: 10.1142/S0218202505000984.  Google Scholar

[3]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime,, Commun. Math. Phys., 277 (2008), 1.  doi: 10.1007/s00220-007-0347-7.  Google Scholar

[4]

L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation,, J. Stat. Phys., 116 (2004), 367.  doi: 10.1023/B:JOSS.0000037224.56191.ed.  Google Scholar

[5]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials,, Zürich Lectures in Advanced Mathematics, (2013).   Google Scholar

[6]

F. King, BBGKY Hierarchy for Positive Potentials,, Ph.D thesis, (1975).   Google Scholar

[7]

O. E. Lanford III, Time Evolution of Large Classical Systems,, Lecture Notes in Physics, 38 (1975), 1.   Google Scholar

[8]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases,, Phys. Rev., 43 (1933), 552.  doi: 10.1103/PhysRev.43.552.  Google Scholar

show all references

References:
[1]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation,, J. Stat. Phys., 116 (2004), 381.  doi: 10.1023/B:JOSS.0000037205.09518.3f.  Google Scholar

[2]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions,, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811.  doi: 10.1142/S0218202505000984.  Google Scholar

[3]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime,, Commun. Math. Phys., 277 (2008), 1.  doi: 10.1007/s00220-007-0347-7.  Google Scholar

[4]

L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation,, J. Stat. Phys., 116 (2004), 367.  doi: 10.1023/B:JOSS.0000037224.56191.ed.  Google Scholar

[5]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials,, Zürich Lectures in Advanced Mathematics, (2013).   Google Scholar

[6]

F. King, BBGKY Hierarchy for Positive Potentials,, Ph.D thesis, (1975).   Google Scholar

[7]

O. E. Lanford III, Time Evolution of Large Classical Systems,, Lecture Notes in Physics, 38 (1975), 1.   Google Scholar

[8]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases,, Phys. Rev., 43 (1933), 552.  doi: 10.1103/PhysRev.43.552.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]