Citation: |
[1] |
L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations: A kinetic model, Communications in Mathematical Physics, 310 (2012), 765-788.doi: 10.1007/s00220-012-1415-1. |
[2] |
L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations - a two-component space-dependent model close to equilibrium, preprint, arXiv:1307.3012. |
[3] |
L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Ration. Mech. Anal., 77 (1981), 11-21.doi: 10.1007/BF00280403. |
[4] |
D. Benin, Phonon viscosity and wide-angle phonon scattering in superfluid helium, Phys. Rev. B, 11 (1975), 145-149.doi: 10.1103/PhysRevB.11.145. |
[5] |
F. A. Buot, On the relaxation rate spectrum of phonons, J. Phys. C: Solid State Phys., 5 (1972), 5-14.doi: 10.1088/0022-3719/5/1/004. |
[6] |
R. E. Caflisch, The Boltzmann equation with a soft potential I. Linear, spatially-homogeneous, Comm. Math. Phys., 74 (1980), 71-95.doi: 10.1007/BF01197579. |
[7] |
T. Carleman, Sur la théorie de l'équation intégrodifférentielle de Boltzmann, Acta Math., 60 (1933), 91-146.doi: 10.1007/BF02398270. |
[8] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory Of Dilute Gases, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4419-8524-8. |
[9] |
F. H. Claro and G. H. Wannier, Relaxation spectrum of phonons: A solvable model, J. Math. Phys., 12 (1971), 92-95.doi: 10.1063/1.1665492. |
[10] |
L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9. |
[11] |
U. Eckern, Relaxation processes in a condensed Bose gas, J. Low Temp. Phys., 54 (1984), 333-359.doi: 10.1007/BF00683281. |
[12] |
M. Escobedo, F. Pezzotti and M. Valle, Analytical approach to relaxation dynamics of condensed Bose gases, Ann. Physics, 326 (2011), 808-827.doi: 10.1016/j.aop.2010.11.001. |
[13] |
H. Grad, Asymptotic theory of the Boltzmann equation {II}, in Rarefied Gas Dynamics, Vol. I (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Academic Press, New York, 1963, 26-59. |
[14] |
M. Imamovic-Tomasovic and A. Griffin, Quasiparticle kinetic equation in a trapped Bose gas at low temperatures, J. Low Temp. Phys., 122 (2001), 617-655. |
[15] |
T. R. Kirkpatrick and J. R. Dorfman, Transport theory for a weakly interacting condensed Bose gas, Phys. Rev. A, 28 (1983), 2576-2579.doi: 10.1103/PhysRevA.28.2576. |
[16] |
T. R. Kirkpatrick and J. R. Dorfman, Transport in a dilute but condensed nonideal Bose gas: Kinetic equations, J. Low Temp. Phys., 58 (1985), 301-331.doi: 10.1007/BF00681309. |
[17] |
H. Spohn, The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics, J. Stat. Phys., 124 (2006), 1041-1104.doi: 10.1007/s10955-005-8088-5. |
[18] |
R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Archive for Rational Mechanics and Analysis, 187 (2008), 287-339.doi: 10.1007/s00205-007-0067-3. |
[19] |
S. Ukai and K. Asano, On the Cauchy problem of the Boltzmann equation with a soft potential, Publ. RIMS, Kyoto Univ., 18 (1982), 57-99.doi: 10.2977/prims/1195183569. |
[20] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook Of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, 71-305.doi: 10.1016/S1874-5792(02)80004-0. |
[21] |
G. H. Wannier, Relaxation rate spectrum of photons, Bull. Am. Phys. Soc., 14 (1969), 303-303. |