March  2015, 8(1): 53-77. doi: 10.3934/krm.2015.8.53

On the Boltzmann equation with the symmetric stable Lévy process

1. 

Department of Mathematics, College of Natural Sciences, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756

Received  June 2014 Revised  October 2014 Published  December 2014

As for the spatially homogeneous Boltzmann equation of Maxwellian molecules with the fractional Fokker-Planck diffusion term, we consider the Cauchy problem for its Fourier-transformed version, which can be viewed as a kinetic model for the stochastic time-evolution of characteristic functions associated with the symmetric stable Lévy process and the Maxwellian collision dynamics. Under a non-cutoff assumption on the kernel, we establish a global existence theorem with maximum growth estimate, uniqueness and stability of solutions.
Citation: Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53
References:
[1]

R. Alexandre and M. El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I. Non-cutoff case and Maxwellian molecules,, Math. Models Methods Appl. Sci., 15 (2005), 907.  doi: 10.1142/S0218202505000613.  Google Scholar

[2]

L. Arkeryd, On the Boltzmann equation,, Arch. Rational Mech. Anal., 45 (1972), 1.   Google Scholar

[3]

M. Bisi, J. A. Carrillo and G. Toscani, Contractive metrics for a Boltzmann equation for granular gases: Diffusive equilibria,, J. Stat. Phys., 118 (2005), 301.  doi: 10.1007/s10955-004-8785-5.  Google Scholar

[4]

R. Blumenthal and R. Getoor, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95 (1960), 263.  doi: 10.1090/S0002-9947-1960-0119247-6.  Google Scholar

[5]

A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules,, Dokl. Akad. Nauk SSSR, 225 (1975), 1041.   Google Scholar

[6]

A. V. Bobylev and C. Cercignani, Self-silimiar solutions of the Boltzmann equation and their applications,, J. Stat. Phys., 106 (2002), 1039.  doi: 10.1023/A:1014037804043.  Google Scholar

[7]

S. Bochner and K. Chandrasekharan, Fourier Transforms,, Princeton University Press, (1949).   Google Scholar

[8]

M. Cannone and G. Karch, Infinite energy solutions to the homogeneous Boltzmann equation,, Comm. Pure Appl. Math., 63 (2010), 747.  doi: 10.1002/cpa.20298.  Google Scholar

[9]

M. Cannone and G. Karch, On self-similar solutions to the homogeneous Boltzmann equation,, Kinetic and Related Models, 6 (2013), 801.  doi: 10.3934/krm.2013.6.801.  Google Scholar

[10]

J. A. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations,, Riv. Mat. Univ. Parma, 6 (2007), 75.   Google Scholar

[11]

Y.-K. Cho, A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem,, Kinetic and Related Models, 5 (2012), 441.  doi: 10.3934/krm.2012.5.441.  Google Scholar

[12]

R. DiPerna and P.-L. Lions, On the Fokker-Planck-Boltzmann equation,, Comm. Math. Phys., 120 (1988), 1.   Google Scholar

[13]

I. Gamba, V. Panferov and C. Villani, On the Boltzmann equation for diffusively excited granular media,, Comm. Math. Phys., 246 (2004), 503.  doi: 10.1007/s00220-004-1051-5.  Google Scholar

[14]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions,, J. Stat. Phys., 89 (1997), 752.  doi: 10.1007/BF02765543.  Google Scholar

[15]

K. Hamdache, Estimations uniformes des solutions de l'equation de Boltzmann par les methodes de viscosité artificielle et de diffusion de Fokker-Planck,, A. R. Acad. Sci. Paris, 302 (1986), 187.   Google Scholar

[16]

R. Laha and V. Rohatgi, Probability Theory,, John Wiley & Sons, (1979).   Google Scholar

[17]

Y. Morimoto, A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules,, Kinetic and Related Models, 5 (2012), 551.  doi: 10.3934/krm.2012.5.551.  Google Scholar

[18]

Y. Morimoto, S. Wang and T. Yang, A new characterization and global regularity of infinite energy solutions to the homogeneous Boltzmann equation, preprint,, , ().   Google Scholar

[19]

Y. Morimoto and T. Yang, Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().   Google Scholar

[20]

A. Pulvirenti and G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation,, Ann. Mat. Pura Appl., 171 (1996), 181.  doi: 10.1007/BF01759387.  Google Scholar

[21]

I. Schoenberg, Metric spaces and positive definite functions,, Trans. Amer. Math. Soc., 44 (1938), 522.  doi: 10.2307/1989894.  Google Scholar

[22]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Stat. Phys., 94 (1999), 619.  doi: 10.1023/A:1004589506756.  Google Scholar

[23]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273.  doi: 10.1007/s002050050106.  Google Scholar

[24]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in Handbook of Mathematical Fluid Dynamics, I (2002), 71.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

show all references

References:
[1]

R. Alexandre and M. El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I. Non-cutoff case and Maxwellian molecules,, Math. Models Methods Appl. Sci., 15 (2005), 907.  doi: 10.1142/S0218202505000613.  Google Scholar

[2]

L. Arkeryd, On the Boltzmann equation,, Arch. Rational Mech. Anal., 45 (1972), 1.   Google Scholar

[3]

M. Bisi, J. A. Carrillo and G. Toscani, Contractive metrics for a Boltzmann equation for granular gases: Diffusive equilibria,, J. Stat. Phys., 118 (2005), 301.  doi: 10.1007/s10955-004-8785-5.  Google Scholar

[4]

R. Blumenthal and R. Getoor, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95 (1960), 263.  doi: 10.1090/S0002-9947-1960-0119247-6.  Google Scholar

[5]

A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules,, Dokl. Akad. Nauk SSSR, 225 (1975), 1041.   Google Scholar

[6]

A. V. Bobylev and C. Cercignani, Self-silimiar solutions of the Boltzmann equation and their applications,, J. Stat. Phys., 106 (2002), 1039.  doi: 10.1023/A:1014037804043.  Google Scholar

[7]

S. Bochner and K. Chandrasekharan, Fourier Transforms,, Princeton University Press, (1949).   Google Scholar

[8]

M. Cannone and G. Karch, Infinite energy solutions to the homogeneous Boltzmann equation,, Comm. Pure Appl. Math., 63 (2010), 747.  doi: 10.1002/cpa.20298.  Google Scholar

[9]

M. Cannone and G. Karch, On self-similar solutions to the homogeneous Boltzmann equation,, Kinetic and Related Models, 6 (2013), 801.  doi: 10.3934/krm.2013.6.801.  Google Scholar

[10]

J. A. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations,, Riv. Mat. Univ. Parma, 6 (2007), 75.   Google Scholar

[11]

Y.-K. Cho, A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem,, Kinetic and Related Models, 5 (2012), 441.  doi: 10.3934/krm.2012.5.441.  Google Scholar

[12]

R. DiPerna and P.-L. Lions, On the Fokker-Planck-Boltzmann equation,, Comm. Math. Phys., 120 (1988), 1.   Google Scholar

[13]

I. Gamba, V. Panferov and C. Villani, On the Boltzmann equation for diffusively excited granular media,, Comm. Math. Phys., 246 (2004), 503.  doi: 10.1007/s00220-004-1051-5.  Google Scholar

[14]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions,, J. Stat. Phys., 89 (1997), 752.  doi: 10.1007/BF02765543.  Google Scholar

[15]

K. Hamdache, Estimations uniformes des solutions de l'equation de Boltzmann par les methodes de viscosité artificielle et de diffusion de Fokker-Planck,, A. R. Acad. Sci. Paris, 302 (1986), 187.   Google Scholar

[16]

R. Laha and V. Rohatgi, Probability Theory,, John Wiley & Sons, (1979).   Google Scholar

[17]

Y. Morimoto, A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules,, Kinetic and Related Models, 5 (2012), 551.  doi: 10.3934/krm.2012.5.551.  Google Scholar

[18]

Y. Morimoto, S. Wang and T. Yang, A new characterization and global regularity of infinite energy solutions to the homogeneous Boltzmann equation, preprint,, , ().   Google Scholar

[19]

Y. Morimoto and T. Yang, Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().   Google Scholar

[20]

A. Pulvirenti and G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation,, Ann. Mat. Pura Appl., 171 (1996), 181.  doi: 10.1007/BF01759387.  Google Scholar

[21]

I. Schoenberg, Metric spaces and positive definite functions,, Trans. Amer. Math. Soc., 44 (1938), 522.  doi: 10.2307/1989894.  Google Scholar

[22]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Stat. Phys., 94 (1999), 619.  doi: 10.1023/A:1004589506756.  Google Scholar

[23]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273.  doi: 10.1007/s002050050106.  Google Scholar

[24]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in Handbook of Mathematical Fluid Dynamics, I (2002), 71.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[1]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[2]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[11]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]