September  2015, 8(3): 587-613. doi: 10.3934/krm.2015.8.587

The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis

1. 

Department of Mathematics at Faculty of Economics Sciences, National Research University Higher School of Economics, Myasnitskaya 20, 101000 Moscow

Received  November 2014 Revised  March 2015 Published  June 2015

We deal with the initial-boundary value problem for the 1D time-dependent Schrödinger equation on the half-axis. The finite-difference scheme with the Numerov averages on the non-uniform space mesh and of the Crank-Nicolson type in time is studied, with some approximate transparent boundary conditions (TBCs). Deriving bounds for the skew-Hermitian parts of the Numerov sesquilinear forms, we prove the uniform in time stability in $L^2$- and $H^1$-like space norms under suitable conditions on the potential and the meshes. In the case of the discrete TBC, we also derive higher order in space error estimates in both norms in dependence with the Sobolev regularity of the initial function (and the potential) and properties of the space mesh. Numerical results are presented for tunneling through smooth and rectangular potentials-wells, including the global Richardson extrapolation in time to ensure higher order in time as well.
Citation: Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587
References:
[1]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4 (2008), 729-796.

[2]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), 313-319. doi: 10.1155/1998/38298.

[3]

H. S. Arora and Y. Miyamoto, Portable scheme for solving 1-D time-dependent Schrödinger equation for photo-induced dynamics of an electron in quantum wells, IEEE J. Quantum Electronics, 49 (2013), 395-401.

[4]

S. Chen, X. Gao, J. Li, A. Becker and A. Jaroń-Becker, Application of a numerical-basis-state method to strong-field excitation and ionization of hydrogen atoms, Phys. Rev. A, 86 (2012), 013410. doi: 10.1103/PhysRevA.86.013410.

[5]

S. A. Chin and J. Geiser, Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations, IMA J. Numer. Anal., 31 (2011), 1552-1577. doi: 10.1093/imanum/drq022.

[6]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I, Commun. Math. Sci., 4 (2006), 741-766. doi: 10.4310/CMS.2006.v4.n4.a4.

[7]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II, Commun. Math. Sci., 5 (2007), 267-298. doi: 10.4310/CMS.2007.v5.n2.a3.

[8]

B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped, Appl. Math. Comput., 255 (2015), 196-206. doi: 10.1016/j.amc.2014.07.058.

[9]

B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation, Kinetic Relat. Models, 2 (2009), 151-179. doi: 10.3934/krm.2009.2.151.

[10]

M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, Riv. Mat. Univ. Parma, 6 (2001), 57-108.

[11]

I. Farago, A. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application, J. Comput. Appl. Math., 226 (2009), 218-227. doi: 10.1016/j.cam.2008.08.003.

[12]

B. Gustafsson, High Order Difference Methods for Time Dependent PDE, Springer, Berlin, 2008.

[13]

E. Hairer, Ch. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Stat. Comput., 6 (1985), 532-541. doi: 10.1137/0906037.

[14]

A. Heidari, O. A. Beg and M. Ghorbani, Study of the vibrational characteristics of the homonuclear diatomic nuclear Schrödinger equation with a Numerov method using a number of empirical potential functions, Russ. J. Phys. Chem. A, 87 (2013), 216-224. doi: 10.1134/S0036024413020040.

[15]

M. K. Jain, S. R. K. Iyengar and G. S. Subramanyam, Variable mesh methods for the numerical solution of two-point singular perturbation problems, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273-286. doi: 10.1016/0045-7825(84)90009-4.

[16]

J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain, J. Comput. Appl. Math., 220 (2008), 240-256. doi: 10.1016/j.cam.2007.08.006.

[17]

C. A. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension, Amer. J. Phys., 72 (2004), 351-358.

[18]

M. Radziunas, R. Čiegis and A. Mirinavičus, On compact higher order finite difference schemes for linear Schrödinger problem on non-uniform meshes, Int. J. Numer. Anal. Model., 11 (2014), 303-314.

[19]

M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation, J. Math. Chem., 48 (2010), 55-65. doi: 10.1007/s10910-009-9626-1.

[20]

F. Robicheaux, Low-energy scattering of molecules and ions in a magnetic field, Phys. Rev. A, 89 (2014), 062701. doi: 10.1103/PhysRevA.89.062701.

[21]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation, Comput. Math. Appl., 29 (1995), 53-76. doi: 10.1016/0898-1221(95)00037-Y.

[22]

M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme, Kinetic Relat. Models, 1 (2008), 101-125. doi: 10.3934/krm.2008.1.101.

[23]

T. E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation, J. Math. Chem., 46 (2009), 981-1007. doi: 10.1007/s10910-009-9553-1.

[24]

K. Singer, U. Poschinger and M. Murphy, et al., Colloquium: Trapped ions as quantum bits: Essential numerical tools, Rev. Mod. Phys., 82 (2010), p2609. doi: 10.1103/RevModPhys.82.2609.

[25]

B. A. Stickler and E. Schachinger, The one-dimensional stationary Schrödinger equation, in Basic Concepts in Computational Physics, Ch. 10, Springer, Berlin, 2014, 131-146. doi: 10.1007/978-3-319-02435-6.

[26]

Z.-Z. Sun, The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions, J. Comput. Phys., 219 (2006), 879-898. doi: 10.1016/j.jcp.2006.07.001.

[27]

B. R. Wong, Numerical solution of the time-dependent Schrödinger equation, in Frontiers in Physics, 3rd Int. Meeting (eds. S.-P. Chia, M. R. Muhamad and K. Ratnavelu), AIP, 2009, 396-401.

[28]

S.-S. Xie, G.-X. Li and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional Schrödinger equation, Comput. Meth. Appl. Mech. Engrg., 198 (2009), 1052-1060. doi: 10.1016/j.cma.2008.11.011.

[29]

A. A. Zlotnik, Convergence rate estimates of finite-element methods for second-order hyperbolic equations, in Numerical Methods and Applications (ed. G.I. Marchuk), CRC Press, Boca Raton, 1994, 155-220.

[30]

A. A. Zlotnik, Error estimates of the Crank-Nicolson-polylinear FEM with the discrete TBC for the generalized Schrödinger equation in an unbounded parallelepiped, in Finite Difference Methods, Theory and Applications. 6th International Conference, FDM 2014, Lozenetz, Bulgaria, June 18-23, 2014, Revised Selected Papers (eds. I. Dimov, I. Farago and L. Vulkov), Springer, Berlin, 2015, in press.

[31]

A. A. Zlotnik and A. V. Lapukhina, Stability of a Numerov type finite-difference scheme with approximate transparent boundary conditions for the nonstationary Schrödinger equation on the half-axis, J. Math. Sci., 169 (2010), 84-97. doi: 10.1007/s10958-010-0040-9.

[32]

A. Zlotnik and A. Romanova, On a Numerov-Crank-Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip, Appl. Numer. Math., 93 (2015), 279-294. doi: 10.1016/j.apnum.2014.05.003.

[33]

A. Zlotnik and I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation, Kinetic Relat. Models, 5 (2012), 639-667. doi: 10.3934/krm.2012.5.639.

[34]

A. Zlotnik and I. Zlotnik, The high order method with discrete TBCs for solving the Cauchy problem for the 1D Schrödinger equation, Comput. Meth. Appl. Math., 15 (2015), 233-245. doi: 10.1515/cmam-2015-0007.

[35]

A. Zlotnik and I. Zlotnik, Remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis, Russ. J. Numer. Anal. Math. Model., 31 (2016), in press.

show all references

References:
[1]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4 (2008), 729-796.

[2]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), 313-319. doi: 10.1155/1998/38298.

[3]

H. S. Arora and Y. Miyamoto, Portable scheme for solving 1-D time-dependent Schrödinger equation for photo-induced dynamics of an electron in quantum wells, IEEE J. Quantum Electronics, 49 (2013), 395-401.

[4]

S. Chen, X. Gao, J. Li, A. Becker and A. Jaroń-Becker, Application of a numerical-basis-state method to strong-field excitation and ionization of hydrogen atoms, Phys. Rev. A, 86 (2012), 013410. doi: 10.1103/PhysRevA.86.013410.

[5]

S. A. Chin and J. Geiser, Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations, IMA J. Numer. Anal., 31 (2011), 1552-1577. doi: 10.1093/imanum/drq022.

[6]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I, Commun. Math. Sci., 4 (2006), 741-766. doi: 10.4310/CMS.2006.v4.n4.a4.

[7]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II, Commun. Math. Sci., 5 (2007), 267-298. doi: 10.4310/CMS.2007.v5.n2.a3.

[8]

B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped, Appl. Math. Comput., 255 (2015), 196-206. doi: 10.1016/j.amc.2014.07.058.

[9]

B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation, Kinetic Relat. Models, 2 (2009), 151-179. doi: 10.3934/krm.2009.2.151.

[10]

M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, Riv. Mat. Univ. Parma, 6 (2001), 57-108.

[11]

I. Farago, A. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application, J. Comput. Appl. Math., 226 (2009), 218-227. doi: 10.1016/j.cam.2008.08.003.

[12]

B. Gustafsson, High Order Difference Methods for Time Dependent PDE, Springer, Berlin, 2008.

[13]

E. Hairer, Ch. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Stat. Comput., 6 (1985), 532-541. doi: 10.1137/0906037.

[14]

A. Heidari, O. A. Beg and M. Ghorbani, Study of the vibrational characteristics of the homonuclear diatomic nuclear Schrödinger equation with a Numerov method using a number of empirical potential functions, Russ. J. Phys. Chem. A, 87 (2013), 216-224. doi: 10.1134/S0036024413020040.

[15]

M. K. Jain, S. R. K. Iyengar and G. S. Subramanyam, Variable mesh methods for the numerical solution of two-point singular perturbation problems, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273-286. doi: 10.1016/0045-7825(84)90009-4.

[16]

J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain, J. Comput. Appl. Math., 220 (2008), 240-256. doi: 10.1016/j.cam.2007.08.006.

[17]

C. A. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension, Amer. J. Phys., 72 (2004), 351-358.

[18]

M. Radziunas, R. Čiegis and A. Mirinavičus, On compact higher order finite difference schemes for linear Schrödinger problem on non-uniform meshes, Int. J. Numer. Anal. Model., 11 (2014), 303-314.

[19]

M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation, J. Math. Chem., 48 (2010), 55-65. doi: 10.1007/s10910-009-9626-1.

[20]

F. Robicheaux, Low-energy scattering of molecules and ions in a magnetic field, Phys. Rev. A, 89 (2014), 062701. doi: 10.1103/PhysRevA.89.062701.

[21]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation, Comput. Math. Appl., 29 (1995), 53-76. doi: 10.1016/0898-1221(95)00037-Y.

[22]

M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme, Kinetic Relat. Models, 1 (2008), 101-125. doi: 10.3934/krm.2008.1.101.

[23]

T. E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation, J. Math. Chem., 46 (2009), 981-1007. doi: 10.1007/s10910-009-9553-1.

[24]

K. Singer, U. Poschinger and M. Murphy, et al., Colloquium: Trapped ions as quantum bits: Essential numerical tools, Rev. Mod. Phys., 82 (2010), p2609. doi: 10.1103/RevModPhys.82.2609.

[25]

B. A. Stickler and E. Schachinger, The one-dimensional stationary Schrödinger equation, in Basic Concepts in Computational Physics, Ch. 10, Springer, Berlin, 2014, 131-146. doi: 10.1007/978-3-319-02435-6.

[26]

Z.-Z. Sun, The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions, J. Comput. Phys., 219 (2006), 879-898. doi: 10.1016/j.jcp.2006.07.001.

[27]

B. R. Wong, Numerical solution of the time-dependent Schrödinger equation, in Frontiers in Physics, 3rd Int. Meeting (eds. S.-P. Chia, M. R. Muhamad and K. Ratnavelu), AIP, 2009, 396-401.

[28]

S.-S. Xie, G.-X. Li and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional Schrödinger equation, Comput. Meth. Appl. Mech. Engrg., 198 (2009), 1052-1060. doi: 10.1016/j.cma.2008.11.011.

[29]

A. A. Zlotnik, Convergence rate estimates of finite-element methods for second-order hyperbolic equations, in Numerical Methods and Applications (ed. G.I. Marchuk), CRC Press, Boca Raton, 1994, 155-220.

[30]

A. A. Zlotnik, Error estimates of the Crank-Nicolson-polylinear FEM with the discrete TBC for the generalized Schrödinger equation in an unbounded parallelepiped, in Finite Difference Methods, Theory and Applications. 6th International Conference, FDM 2014, Lozenetz, Bulgaria, June 18-23, 2014, Revised Selected Papers (eds. I. Dimov, I. Farago and L. Vulkov), Springer, Berlin, 2015, in press.

[31]

A. A. Zlotnik and A. V. Lapukhina, Stability of a Numerov type finite-difference scheme with approximate transparent boundary conditions for the nonstationary Schrödinger equation on the half-axis, J. Math. Sci., 169 (2010), 84-97. doi: 10.1007/s10958-010-0040-9.

[32]

A. Zlotnik and A. Romanova, On a Numerov-Crank-Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip, Appl. Numer. Math., 93 (2015), 279-294. doi: 10.1016/j.apnum.2014.05.003.

[33]

A. Zlotnik and I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation, Kinetic Relat. Models, 5 (2012), 639-667. doi: 10.3934/krm.2012.5.639.

[34]

A. Zlotnik and I. Zlotnik, The high order method with discrete TBCs for solving the Cauchy problem for the 1D Schrödinger equation, Comput. Meth. Appl. Math., 15 (2015), 233-245. doi: 10.1515/cmam-2015-0007.

[35]

A. Zlotnik and I. Zlotnik, Remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis, Russ. J. Numer. Anal. Math. Model., 31 (2016), in press.

[1]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153

[2]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[3]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[4]

Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022074

[5]

Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems and Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039

[6]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic and Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[7]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic and Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[8]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[9]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[10]

Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems and Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038

[11]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[12]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[13]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[14]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[15]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[16]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[17]

Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1127-1141. doi: 10.3934/dcdss.2021090

[18]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[19]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[20]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (139)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]