September  2015, 8(3): 587-613. doi: 10.3934/krm.2015.8.587

The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis

1. 

Department of Mathematics at Faculty of Economics Sciences, National Research University Higher School of Economics, Myasnitskaya 20, 101000 Moscow

Received  November 2014 Revised  March 2015 Published  June 2015

We deal with the initial-boundary value problem for the 1D time-dependent Schrödinger equation on the half-axis. The finite-difference scheme with the Numerov averages on the non-uniform space mesh and of the Crank-Nicolson type in time is studied, with some approximate transparent boundary conditions (TBCs). Deriving bounds for the skew-Hermitian parts of the Numerov sesquilinear forms, we prove the uniform in time stability in $L^2$- and $H^1$-like space norms under suitable conditions on the potential and the meshes. In the case of the discrete TBC, we also derive higher order in space error estimates in both norms in dependence with the Sobolev regularity of the initial function (and the potential) and properties of the space mesh. Numerical results are presented for tunneling through smooth and rectangular potentials-wells, including the global Richardson extrapolation in time to ensure higher order in time as well.
Citation: Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587
References:
[1]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Phys., 4 (2008), 729.

[2]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations,, VLSI Design, 6 (1998), 313. doi: 10.1155/1998/38298.

[3]

H. S. Arora and Y. Miyamoto, Portable scheme for solving 1-D time-dependent Schrödinger equation for photo-induced dynamics of an electron in quantum wells,, IEEE J. Quantum Electronics, 49 (2013), 395.

[4]

S. Chen, X. Gao, J. Li, A. Becker and A. Jaroń-Becker, Application of a numerical-basis-state method to strong-field excitation and ionization of hydrogen atoms,, Phys. Rev. A, 86 (2012). doi: 10.1103/PhysRevA.86.013410.

[5]

S. A. Chin and J. Geiser, Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations,, IMA J. Numer. Anal., 31 (2011), 1552. doi: 10.1093/imanum/drq022.

[6]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I,, Commun. Math. Sci., 4 (2006), 741. doi: 10.4310/CMS.2006.v4.n4.a4.

[7]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II,, Commun. Math. Sci., 5 (2007), 267. doi: 10.4310/CMS.2007.v5.n2.a3.

[8]

B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped,, Appl. Math. Comput., 255 (2015), 196. doi: 10.1016/j.amc.2014.07.058.

[9]

B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation,, Kinetic Relat. Models, 2 (2009), 151. doi: 10.3934/krm.2009.2.151.

[10]

M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation,, Riv. Mat. Univ. Parma, 6 (2001), 57.

[11]

I. Farago, A. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application,, J. Comput. Appl. Math., 226 (2009), 218. doi: 10.1016/j.cam.2008.08.003.

[12]

B. Gustafsson, High Order Difference Methods for Time Dependent PDE,, Springer, (2008).

[13]

E. Hairer, Ch. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations,, SIAM J. Sci. Stat. Comput., 6 (1985), 532. doi: 10.1137/0906037.

[14]

A. Heidari, O. A. Beg and M. Ghorbani, Study of the vibrational characteristics of the homonuclear diatomic nuclear Schrödinger equation with a Numerov method using a number of empirical potential functions,, Russ. J. Phys. Chem. A, 87 (2013), 216. doi: 10.1134/S0036024413020040.

[15]

M. K. Jain, S. R. K. Iyengar and G. S. Subramanyam, Variable mesh methods for the numerical solution of two-point singular perturbation problems,, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273. doi: 10.1016/0045-7825(84)90009-4.

[16]

J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain,, J. Comput. Appl. Math., 220 (2008), 240. doi: 10.1016/j.cam.2007.08.006.

[17]

C. A. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension,, Amer. J. Phys., 72 (2004), 351.

[18]

M. Radziunas, R. Čiegis and A. Mirinavičus, On compact higher order finite difference schemes for linear Schrödinger problem on non-uniform meshes,, Int. J. Numer. Anal. Model., 11 (2014), 303.

[19]

M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation,, J. Math. Chem., 48 (2010), 55. doi: 10.1007/s10910-009-9626-1.

[20]

F. Robicheaux, Low-energy scattering of molecules and ions in a magnetic field,, Phys. Rev. A, 89 (2014). doi: 10.1103/PhysRevA.89.062701.

[21]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation,, Comput. Math. Appl., 29 (1995), 53. doi: 10.1016/0898-1221(95)00037-Y.

[22]

M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme,, Kinetic Relat. Models, 1 (2008), 101. doi: 10.3934/krm.2008.1.101.

[23]

T. E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation,, J. Math. Chem., 46 (2009), 981. doi: 10.1007/s10910-009-9553-1.

[24]

K. Singer, U. Poschinger and M. Murphy, et al., Colloquium: Trapped ions as quantum bits: Essential numerical tools,, Rev. Mod. Phys., 82 (2010). doi: 10.1103/RevModPhys.82.2609.

[25]

B. A. Stickler and E. Schachinger, The one-dimensional stationary Schrödinger equation,, in Basic Concepts in Computational Physics, (2014), 131. doi: 10.1007/978-3-319-02435-6.

[26]

Z.-Z. Sun, The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions,, J. Comput. Phys., 219 (2006), 879. doi: 10.1016/j.jcp.2006.07.001.

[27]

B. R. Wong, Numerical solution of the time-dependent Schrödinger equation,, in Frontiers in Physics, (2009), 396.

[28]

S.-S. Xie, G.-X. Li and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional Schrödinger equation,, Comput. Meth. Appl. Mech. Engrg., 198 (2009), 1052. doi: 10.1016/j.cma.2008.11.011.

[29]

A. A. Zlotnik, Convergence rate estimates of finite-element methods for second-order hyperbolic equations,, in Numerical Methods and Applications (ed. G.I. Marchuk), (1994), 155.

[30]

A. A. Zlotnik, Error estimates of the Crank-Nicolson-polylinear FEM with the discrete TBC for the generalized Schrödinger equation in an unbounded parallelepiped,, in Finite Difference Methods, (2014), 18.

[31]

A. A. Zlotnik and A. V. Lapukhina, Stability of a Numerov type finite-difference scheme with approximate transparent boundary conditions for the nonstationary Schrödinger equation on the half-axis,, J. Math. Sci., 169 (2010), 84. doi: 10.1007/s10958-010-0040-9.

[32]

A. Zlotnik and A. Romanova, On a Numerov-Crank-Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip,, Appl. Numer. Math., 93 (2015), 279. doi: 10.1016/j.apnum.2014.05.003.

[33]

A. Zlotnik and I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation,, Kinetic Relat. Models, 5 (2012), 639. doi: 10.3934/krm.2012.5.639.

[34]

A. Zlotnik and I. Zlotnik, The high order method with discrete TBCs for solving the Cauchy problem for the 1D Schrödinger equation,, Comput. Meth. Appl. Math., 15 (2015), 233. doi: 10.1515/cmam-2015-0007.

[35]

A. Zlotnik and I. Zlotnik, Remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis,, Russ. J. Numer. Anal. Math. Model., 31 (2016).

show all references

References:
[1]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Phys., 4 (2008), 729.

[2]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations,, VLSI Design, 6 (1998), 313. doi: 10.1155/1998/38298.

[3]

H. S. Arora and Y. Miyamoto, Portable scheme for solving 1-D time-dependent Schrödinger equation for photo-induced dynamics of an electron in quantum wells,, IEEE J. Quantum Electronics, 49 (2013), 395.

[4]

S. Chen, X. Gao, J. Li, A. Becker and A. Jaroń-Becker, Application of a numerical-basis-state method to strong-field excitation and ionization of hydrogen atoms,, Phys. Rev. A, 86 (2012). doi: 10.1103/PhysRevA.86.013410.

[5]

S. A. Chin and J. Geiser, Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations,, IMA J. Numer. Anal., 31 (2011), 1552. doi: 10.1093/imanum/drq022.

[6]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I,, Commun. Math. Sci., 4 (2006), 741. doi: 10.4310/CMS.2006.v4.n4.a4.

[7]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II,, Commun. Math. Sci., 5 (2007), 267. doi: 10.4310/CMS.2007.v5.n2.a3.

[8]

B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped,, Appl. Math. Comput., 255 (2015), 196. doi: 10.1016/j.amc.2014.07.058.

[9]

B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation,, Kinetic Relat. Models, 2 (2009), 151. doi: 10.3934/krm.2009.2.151.

[10]

M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation,, Riv. Mat. Univ. Parma, 6 (2001), 57.

[11]

I. Farago, A. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application,, J. Comput. Appl. Math., 226 (2009), 218. doi: 10.1016/j.cam.2008.08.003.

[12]

B. Gustafsson, High Order Difference Methods for Time Dependent PDE,, Springer, (2008).

[13]

E. Hairer, Ch. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations,, SIAM J. Sci. Stat. Comput., 6 (1985), 532. doi: 10.1137/0906037.

[14]

A. Heidari, O. A. Beg and M. Ghorbani, Study of the vibrational characteristics of the homonuclear diatomic nuclear Schrödinger equation with a Numerov method using a number of empirical potential functions,, Russ. J. Phys. Chem. A, 87 (2013), 216. doi: 10.1134/S0036024413020040.

[15]

M. K. Jain, S. R. K. Iyengar and G. S. Subramanyam, Variable mesh methods for the numerical solution of two-point singular perturbation problems,, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273. doi: 10.1016/0045-7825(84)90009-4.

[16]

J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain,, J. Comput. Appl. Math., 220 (2008), 240. doi: 10.1016/j.cam.2007.08.006.

[17]

C. A. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension,, Amer. J. Phys., 72 (2004), 351.

[18]

M. Radziunas, R. Čiegis and A. Mirinavičus, On compact higher order finite difference schemes for linear Schrödinger problem on non-uniform meshes,, Int. J. Numer. Anal. Model., 11 (2014), 303.

[19]

M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation,, J. Math. Chem., 48 (2010), 55. doi: 10.1007/s10910-009-9626-1.

[20]

F. Robicheaux, Low-energy scattering of molecules and ions in a magnetic field,, Phys. Rev. A, 89 (2014). doi: 10.1103/PhysRevA.89.062701.

[21]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation,, Comput. Math. Appl., 29 (1995), 53. doi: 10.1016/0898-1221(95)00037-Y.

[22]

M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme,, Kinetic Relat. Models, 1 (2008), 101. doi: 10.3934/krm.2008.1.101.

[23]

T. E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation,, J. Math. Chem., 46 (2009), 981. doi: 10.1007/s10910-009-9553-1.

[24]

K. Singer, U. Poschinger and M. Murphy, et al., Colloquium: Trapped ions as quantum bits: Essential numerical tools,, Rev. Mod. Phys., 82 (2010). doi: 10.1103/RevModPhys.82.2609.

[25]

B. A. Stickler and E. Schachinger, The one-dimensional stationary Schrödinger equation,, in Basic Concepts in Computational Physics, (2014), 131. doi: 10.1007/978-3-319-02435-6.

[26]

Z.-Z. Sun, The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions,, J. Comput. Phys., 219 (2006), 879. doi: 10.1016/j.jcp.2006.07.001.

[27]

B. R. Wong, Numerical solution of the time-dependent Schrödinger equation,, in Frontiers in Physics, (2009), 396.

[28]

S.-S. Xie, G.-X. Li and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional Schrödinger equation,, Comput. Meth. Appl. Mech. Engrg., 198 (2009), 1052. doi: 10.1016/j.cma.2008.11.011.

[29]

A. A. Zlotnik, Convergence rate estimates of finite-element methods for second-order hyperbolic equations,, in Numerical Methods and Applications (ed. G.I. Marchuk), (1994), 155.

[30]

A. A. Zlotnik, Error estimates of the Crank-Nicolson-polylinear FEM with the discrete TBC for the generalized Schrödinger equation in an unbounded parallelepiped,, in Finite Difference Methods, (2014), 18.

[31]

A. A. Zlotnik and A. V. Lapukhina, Stability of a Numerov type finite-difference scheme with approximate transparent boundary conditions for the nonstationary Schrödinger equation on the half-axis,, J. Math. Sci., 169 (2010), 84. doi: 10.1007/s10958-010-0040-9.

[32]

A. Zlotnik and A. Romanova, On a Numerov-Crank-Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip,, Appl. Numer. Math., 93 (2015), 279. doi: 10.1016/j.apnum.2014.05.003.

[33]

A. Zlotnik and I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation,, Kinetic Relat. Models, 5 (2012), 639. doi: 10.3934/krm.2012.5.639.

[34]

A. Zlotnik and I. Zlotnik, The high order method with discrete TBCs for solving the Cauchy problem for the 1D Schrödinger equation,, Comput. Meth. Appl. Math., 15 (2015), 233. doi: 10.1515/cmam-2015-0007.

[35]

A. Zlotnik and I. Zlotnik, Remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis,, Russ. J. Numer. Anal. Math. Model., 31 (2016).

[1]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[2]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[3]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic & Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[4]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[5]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[6]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[7]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[8]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[9]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[10]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[11]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[12]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[13]

Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614

[14]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[15]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[16]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[17]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[18]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[19]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[20]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]