September  2015, 8(3): 587-613. doi: 10.3934/krm.2015.8.587

The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis

1. 

Department of Mathematics at Faculty of Economics Sciences, National Research University Higher School of Economics, Myasnitskaya 20, 101000 Moscow

Received  November 2014 Revised  March 2015 Published  June 2015

We deal with the initial-boundary value problem for the 1D time-dependent Schrödinger equation on the half-axis. The finite-difference scheme with the Numerov averages on the non-uniform space mesh and of the Crank-Nicolson type in time is studied, with some approximate transparent boundary conditions (TBCs). Deriving bounds for the skew-Hermitian parts of the Numerov sesquilinear forms, we prove the uniform in time stability in $L^2$- and $H^1$-like space norms under suitable conditions on the potential and the meshes. In the case of the discrete TBC, we also derive higher order in space error estimates in both norms in dependence with the Sobolev regularity of the initial function (and the potential) and properties of the space mesh. Numerical results are presented for tunneling through smooth and rectangular potentials-wells, including the global Richardson extrapolation in time to ensure higher order in time as well.
Citation: Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587
References:
[1]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Phys., 4 (2008), 729.   Google Scholar

[2]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations,, VLSI Design, 6 (1998), 313.  doi: 10.1155/1998/38298.  Google Scholar

[3]

H. S. Arora and Y. Miyamoto, Portable scheme for solving 1-D time-dependent Schrödinger equation for photo-induced dynamics of an electron in quantum wells,, IEEE J. Quantum Electronics, 49 (2013), 395.   Google Scholar

[4]

S. Chen, X. Gao, J. Li, A. Becker and A. Jaroń-Becker, Application of a numerical-basis-state method to strong-field excitation and ionization of hydrogen atoms,, Phys. Rev. A, 86 (2012).  doi: 10.1103/PhysRevA.86.013410.  Google Scholar

[5]

S. A. Chin and J. Geiser, Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations,, IMA J. Numer. Anal., 31 (2011), 1552.  doi: 10.1093/imanum/drq022.  Google Scholar

[6]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I,, Commun. Math. Sci., 4 (2006), 741.  doi: 10.4310/CMS.2006.v4.n4.a4.  Google Scholar

[7]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II,, Commun. Math. Sci., 5 (2007), 267.  doi: 10.4310/CMS.2007.v5.n2.a3.  Google Scholar

[8]

B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped,, Appl. Math. Comput., 255 (2015), 196.  doi: 10.1016/j.amc.2014.07.058.  Google Scholar

[9]

B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation,, Kinetic Relat. Models, 2 (2009), 151.  doi: 10.3934/krm.2009.2.151.  Google Scholar

[10]

M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation,, Riv. Mat. Univ. Parma, 6 (2001), 57.   Google Scholar

[11]

I. Farago, A. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application,, J. Comput. Appl. Math., 226 (2009), 218.  doi: 10.1016/j.cam.2008.08.003.  Google Scholar

[12]

B. Gustafsson, High Order Difference Methods for Time Dependent PDE,, Springer, (2008).   Google Scholar

[13]

E. Hairer, Ch. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations,, SIAM J. Sci. Stat. Comput., 6 (1985), 532.  doi: 10.1137/0906037.  Google Scholar

[14]

A. Heidari, O. A. Beg and M. Ghorbani, Study of the vibrational characteristics of the homonuclear diatomic nuclear Schrödinger equation with a Numerov method using a number of empirical potential functions,, Russ. J. Phys. Chem. A, 87 (2013), 216.  doi: 10.1134/S0036024413020040.  Google Scholar

[15]

M. K. Jain, S. R. K. Iyengar and G. S. Subramanyam, Variable mesh methods for the numerical solution of two-point singular perturbation problems,, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273.  doi: 10.1016/0045-7825(84)90009-4.  Google Scholar

[16]

J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain,, J. Comput. Appl. Math., 220 (2008), 240.  doi: 10.1016/j.cam.2007.08.006.  Google Scholar

[17]

C. A. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension,, Amer. J. Phys., 72 (2004), 351.   Google Scholar

[18]

M. Radziunas, R. Čiegis and A. Mirinavičus, On compact higher order finite difference schemes for linear Schrödinger problem on non-uniform meshes,, Int. J. Numer. Anal. Model., 11 (2014), 303.   Google Scholar

[19]

M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation,, J. Math. Chem., 48 (2010), 55.  doi: 10.1007/s10910-009-9626-1.  Google Scholar

[20]

F. Robicheaux, Low-energy scattering of molecules and ions in a magnetic field,, Phys. Rev. A, 89 (2014).  doi: 10.1103/PhysRevA.89.062701.  Google Scholar

[21]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation,, Comput. Math. Appl., 29 (1995), 53.  doi: 10.1016/0898-1221(95)00037-Y.  Google Scholar

[22]

M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme,, Kinetic Relat. Models, 1 (2008), 101.  doi: 10.3934/krm.2008.1.101.  Google Scholar

[23]

T. E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation,, J. Math. Chem., 46 (2009), 981.  doi: 10.1007/s10910-009-9553-1.  Google Scholar

[24]

K. Singer, U. Poschinger and M. Murphy, et al., Colloquium: Trapped ions as quantum bits: Essential numerical tools,, Rev. Mod. Phys., 82 (2010).  doi: 10.1103/RevModPhys.82.2609.  Google Scholar

[25]

B. A. Stickler and E. Schachinger, The one-dimensional stationary Schrödinger equation,, in Basic Concepts in Computational Physics, (2014), 131.  doi: 10.1007/978-3-319-02435-6.  Google Scholar

[26]

Z.-Z. Sun, The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions,, J. Comput. Phys., 219 (2006), 879.  doi: 10.1016/j.jcp.2006.07.001.  Google Scholar

[27]

B. R. Wong, Numerical solution of the time-dependent Schrödinger equation,, in Frontiers in Physics, (2009), 396.   Google Scholar

[28]

S.-S. Xie, G.-X. Li and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional Schrödinger equation,, Comput. Meth. Appl. Mech. Engrg., 198 (2009), 1052.  doi: 10.1016/j.cma.2008.11.011.  Google Scholar

[29]

A. A. Zlotnik, Convergence rate estimates of finite-element methods for second-order hyperbolic equations,, in Numerical Methods and Applications (ed. G.I. Marchuk), (1994), 155.   Google Scholar

[30]

A. A. Zlotnik, Error estimates of the Crank-Nicolson-polylinear FEM with the discrete TBC for the generalized Schrödinger equation in an unbounded parallelepiped,, in Finite Difference Methods, (2014), 18.   Google Scholar

[31]

A. A. Zlotnik and A. V. Lapukhina, Stability of a Numerov type finite-difference scheme with approximate transparent boundary conditions for the nonstationary Schrödinger equation on the half-axis,, J. Math. Sci., 169 (2010), 84.  doi: 10.1007/s10958-010-0040-9.  Google Scholar

[32]

A. Zlotnik and A. Romanova, On a Numerov-Crank-Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip,, Appl. Numer. Math., 93 (2015), 279.  doi: 10.1016/j.apnum.2014.05.003.  Google Scholar

[33]

A. Zlotnik and I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation,, Kinetic Relat. Models, 5 (2012), 639.  doi: 10.3934/krm.2012.5.639.  Google Scholar

[34]

A. Zlotnik and I. Zlotnik, The high order method with discrete TBCs for solving the Cauchy problem for the 1D Schrödinger equation,, Comput. Meth. Appl. Math., 15 (2015), 233.  doi: 10.1515/cmam-2015-0007.  Google Scholar

[35]

A. Zlotnik and I. Zlotnik, Remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis,, Russ. J. Numer. Anal. Math. Model., 31 (2016).   Google Scholar

show all references

References:
[1]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Phys., 4 (2008), 729.   Google Scholar

[2]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations,, VLSI Design, 6 (1998), 313.  doi: 10.1155/1998/38298.  Google Scholar

[3]

H. S. Arora and Y. Miyamoto, Portable scheme for solving 1-D time-dependent Schrödinger equation for photo-induced dynamics of an electron in quantum wells,, IEEE J. Quantum Electronics, 49 (2013), 395.   Google Scholar

[4]

S. Chen, X. Gao, J. Li, A. Becker and A. Jaroń-Becker, Application of a numerical-basis-state method to strong-field excitation and ionization of hydrogen atoms,, Phys. Rev. A, 86 (2012).  doi: 10.1103/PhysRevA.86.013410.  Google Scholar

[5]

S. A. Chin and J. Geiser, Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations,, IMA J. Numer. Anal., 31 (2011), 1552.  doi: 10.1093/imanum/drq022.  Google Scholar

[6]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I,, Commun. Math. Sci., 4 (2006), 741.  doi: 10.4310/CMS.2006.v4.n4.a4.  Google Scholar

[7]

B. Ducomet and A. Zlotnik, On stability of the Crank-Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II,, Commun. Math. Sci., 5 (2007), 267.  doi: 10.4310/CMS.2007.v5.n2.a3.  Google Scholar

[8]

B. Ducomet, A. Zlotnik and A. Romanova, On a splitting higher order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped,, Appl. Math. Comput., 255 (2015), 196.  doi: 10.1016/j.amc.2014.07.058.  Google Scholar

[9]

B. Ducomet, A. Zlotnik and I. Zlotnik, On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized 1D Schrödinger equation,, Kinetic Relat. Models, 2 (2009), 151.  doi: 10.3934/krm.2009.2.151.  Google Scholar

[10]

M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation,, Riv. Mat. Univ. Parma, 6 (2001), 57.   Google Scholar

[11]

I. Farago, A. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application,, J. Comput. Appl. Math., 226 (2009), 218.  doi: 10.1016/j.cam.2008.08.003.  Google Scholar

[12]

B. Gustafsson, High Order Difference Methods for Time Dependent PDE,, Springer, (2008).   Google Scholar

[13]

E. Hairer, Ch. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations,, SIAM J. Sci. Stat. Comput., 6 (1985), 532.  doi: 10.1137/0906037.  Google Scholar

[14]

A. Heidari, O. A. Beg and M. Ghorbani, Study of the vibrational characteristics of the homonuclear diatomic nuclear Schrödinger equation with a Numerov method using a number of empirical potential functions,, Russ. J. Phys. Chem. A, 87 (2013), 216.  doi: 10.1134/S0036024413020040.  Google Scholar

[15]

M. K. Jain, S. R. K. Iyengar and G. S. Subramanyam, Variable mesh methods for the numerical solution of two-point singular perturbation problems,, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273.  doi: 10.1016/0045-7825(84)90009-4.  Google Scholar

[16]

J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain,, J. Comput. Appl. Math., 220 (2008), 240.  doi: 10.1016/j.cam.2007.08.006.  Google Scholar

[17]

C. A. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension,, Amer. J. Phys., 72 (2004), 351.   Google Scholar

[18]

M. Radziunas, R. Čiegis and A. Mirinavičus, On compact higher order finite difference schemes for linear Schrödinger problem on non-uniform meshes,, Int. J. Numer. Anal. Model., 11 (2014), 303.   Google Scholar

[19]

M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation,, J. Math. Chem., 48 (2010), 55.  doi: 10.1007/s10910-009-9626-1.  Google Scholar

[20]

F. Robicheaux, Low-energy scattering of molecules and ions in a magnetic field,, Phys. Rev. A, 89 (2014).  doi: 10.1103/PhysRevA.89.062701.  Google Scholar

[21]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation,, Comput. Math. Appl., 29 (1995), 53.  doi: 10.1016/0898-1221(95)00037-Y.  Google Scholar

[22]

M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme,, Kinetic Relat. Models, 1 (2008), 101.  doi: 10.3934/krm.2008.1.101.  Google Scholar

[23]

T. E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation,, J. Math. Chem., 46 (2009), 981.  doi: 10.1007/s10910-009-9553-1.  Google Scholar

[24]

K. Singer, U. Poschinger and M. Murphy, et al., Colloquium: Trapped ions as quantum bits: Essential numerical tools,, Rev. Mod. Phys., 82 (2010).  doi: 10.1103/RevModPhys.82.2609.  Google Scholar

[25]

B. A. Stickler and E. Schachinger, The one-dimensional stationary Schrödinger equation,, in Basic Concepts in Computational Physics, (2014), 131.  doi: 10.1007/978-3-319-02435-6.  Google Scholar

[26]

Z.-Z. Sun, The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions,, J. Comput. Phys., 219 (2006), 879.  doi: 10.1016/j.jcp.2006.07.001.  Google Scholar

[27]

B. R. Wong, Numerical solution of the time-dependent Schrödinger equation,, in Frontiers in Physics, (2009), 396.   Google Scholar

[28]

S.-S. Xie, G.-X. Li and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional Schrödinger equation,, Comput. Meth. Appl. Mech. Engrg., 198 (2009), 1052.  doi: 10.1016/j.cma.2008.11.011.  Google Scholar

[29]

A. A. Zlotnik, Convergence rate estimates of finite-element methods for second-order hyperbolic equations,, in Numerical Methods and Applications (ed. G.I. Marchuk), (1994), 155.   Google Scholar

[30]

A. A. Zlotnik, Error estimates of the Crank-Nicolson-polylinear FEM with the discrete TBC for the generalized Schrödinger equation in an unbounded parallelepiped,, in Finite Difference Methods, (2014), 18.   Google Scholar

[31]

A. A. Zlotnik and A. V. Lapukhina, Stability of a Numerov type finite-difference scheme with approximate transparent boundary conditions for the nonstationary Schrödinger equation on the half-axis,, J. Math. Sci., 169 (2010), 84.  doi: 10.1007/s10958-010-0040-9.  Google Scholar

[32]

A. Zlotnik and A. Romanova, On a Numerov-Crank-Nicolson-Strang scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip,, Appl. Numer. Math., 93 (2015), 279.  doi: 10.1016/j.apnum.2014.05.003.  Google Scholar

[33]

A. Zlotnik and I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation,, Kinetic Relat. Models, 5 (2012), 639.  doi: 10.3934/krm.2012.5.639.  Google Scholar

[34]

A. Zlotnik and I. Zlotnik, The high order method with discrete TBCs for solving the Cauchy problem for the 1D Schrödinger equation,, Comput. Meth. Appl. Math., 15 (2015), 233.  doi: 10.1515/cmam-2015-0007.  Google Scholar

[35]

A. Zlotnik and I. Zlotnik, Remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis,, Russ. J. Numer. Anal. Math. Model., 31 (2016).   Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[9]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]