\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Confinement by biased velocity jumps: Aggregation of escherichia coli

Abstract / Introduction Related Papers Cited by
  • We investigate a one-dimensional linear kinetic equation derived from a velocity jump process modelling bacterial chemotaxis in presence of an external chemical signal centered at the origin. We prove the existence of a positive equilibrium distribution with an exponential decay at infinity. We deduce a hypocoercivity result, namely: the solution of the Cauchy problem converges exponentially fast towards the stationary state. The strategy follows [J. Dolbeault, C. Mouhot, and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. AMS 2014]. The novelty here is that the equilibrium does not belong to the null spaces of the collision operator and of the transport operator. From a modelling viewpoint, it is related to the observation that exponential confinement is generated by a spatially inhomogeneous bias in the velocity jump process.
    Mathematics Subject Classification: Primary: 35B40, 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.

    [2]

    W. Alt, Orientation of cells migrating in a chemotactic gradient, Biological Growth and Spread, (conf. proc., Heidelberg, 1979), Springer, Berlin, 38 (1980), 353-366.

    [3]

    W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980), 147-177.doi: 10.1007/BF00275919.

    [4]

    A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. PDE, 26 (2001), 43-100.doi: 10.1081/PDE-100002246.

    [5]

    G. Bal, Couplage D'équations et Homogénéisation en Transport Neutronique, Thèse de doctorat de l'Université Paris, 1997.

    [6]

    C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. AMS, 284 (1984), 617-649.doi: 10.1090/S0002-9947-1984-0743736-0.

    [7]

    H. Berg and D. Brown, Chemotaxis in Escheria coli analyzed by 3-dimensional tracking, Nature, 239 (1972), p500.

    [8]

    H. Berg and L. Turner, Chemotaxis of bacteria in glass-capillary arrays - Escheria coli, motility, microchannel plate and light-scattering, Biophys. J., 58 (1990), 919-930.

    [9]

    H. C. Berg, E. Coli in Motion, Springer-Verlag, New York, 2004.doi: 10.1007/b97370.

    [10]

    M. J. Cáceres, J. A. Carrillo and T. Goudon, Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles, Comm. PDE, 28 (2003), 969-989.doi: 10.1081/PDE-120021182.

    [11]

    J. A. Carrillo and B. Yan, An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis, Multiscale Model. Simul., 11 (2013), 336-361.doi: 10.1137/110851687.

    [12]

    F. Chalub, P. A. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141.doi: 10.1007/s00605-004-0234-7.

    [13]

    S. Chatterjee, R. A. da Silveira and Y. Kafri, Chemotaxis when bacteria remember: Drift versus diffusion, PLoS Comput. Biol., 7 (2011), e1002283, 2pp.doi: 10.1371/journal.pcbi.1002283.

    [14]

    L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

    [15]

    L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9.

    [16]

    Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.doi: 10.1007/s00285-005-0334-6.

    [17]

    J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.doi: 10.1090/S0002-9947-2015-06012-7.

    [18]

    R. Erban and H. G. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology, Multiscale Model. Simul., 3 (2005), 362-394.doi: 10.1137/040603565.

    [19]

    F. Filbet, Ph. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.doi: 10.1007/s00285-004-0286-2.

    [20]

    F. Filbet and C. Yang, Numerical simulations of kinetic models for chemotaxis, SIAM J. Sci. Comput., 36 (2014), B348-B366, arXiv:1303.2445 (2013).doi: 10.1137/130910208.

    [21]

    F. Golse, The Milne problem for the radiative transfer equations (with frequency dependence), Trans. Amer. Math. Soc., 303 (1987), 125-143.doi: 10.1090/S0002-9947-1987-0896011-0.

    [22]

    F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1988), 110-125.doi: 10.1016/0022-1236(88)90051-1.

    [23]

    L. Gosse, Asymptotic-preserving and well-balanced schemes for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes, J. Math. Anal. Appl., 388 (2012), 964-983.doi: 10.1016/j.jmaa.2011.10.039.

    [24]

    L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws, SIMAI Springer Series, Springer, Milan, 2013.doi: 10.1007/978-88-470-2892-0.

    [25]

    T. Goudon and A. Mellet, Homogenization and diffusion asymptotics of the linear Boltzmann equation, Control, Optimisation and Calculus of Variations, 9 (2003), 371-398.doi: 10.1051/cocv:2003018.

    [26]

    K. P. Hadeler, Reaction transport systems in biological modelling, Mathematics inspired by biology, (Martina Franca, 1997), Lecture Notes in Math. Springer, Berlin, 1714 (1999), 95-150.doi: 10.1007/BFb0092376.

    [27]

    T. Hillen, On the $L^2$-moment closure of transport equations: The Cattaneo approximation, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 961-982.doi: 10.3934/dcdsb.2004.4.961.

    [28]

    H. J. Hwang, K. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 319-334.doi: 10.3934/dcdsb.2005.5.319.

    [29]

    H. J. Hwang, K. Kang and A. Stevens, Global existence of classical solutions for a hyperbolic chemotaxis model and its parabolic limit, Indiana Univ. Math. J., 55 (2006), 289-316.doi: 10.1512/iumj.2006.55.2677.

    [30]

    F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.doi: 10.1007/s00205-003-0276-3.

    [31]

    T. Hillen and H. G. Othmer, The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.doi: 10.1137/S0036139900382772.

    [32]

    F. James and N. Vauchelet, Chemotaxis: From kinetic equations to aggregate dynamics, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 101-127.doi: 10.1007/s00030-012-0155-4.

    [33]

    Y. Kafri and R. A. da Silveira, Steady-state chemotaxis in escherichia coli, Phys. Rev. Lett., 100 (2008), 238101.

    [34]

    J. M. Newby and J. P. Keener, An asymptotic analysis of the spatially inhomogeneous velocity-jump process, Multiscale Model. Simul., 9 (2011), 735-765.doi: 10.1137/10080676X.

    [35]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [36]

    M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.) (in Russian), 3 (1948), 3-95 (English translation: Amer. Math. Soc. Translation 1950 (26)).

    [37]

    J. T. Locsei, Persistence of direction increases the drift velocity of run and tumble chemotaxis, J. Math. Biol., 55 (2007), 41-60.doi: 10.1007/s00285-007-0080-z.

    [38]

    N. Mittal, E. O. Budrene, M. P. Brenner and A. van Oudenaarden, Motility of Escheria coli cells in clusters formed by chemotactic aggregation, PNAS, 100 (2003), 13259-13263.

    [39]

    R. Natalini and M. Ribot, Asymptotic high order mass-preserving schemes for a hyperbolic model of chemotaxis, SIAM J. Numer. Anal., 50 (2012), 883-905.doi: 10.1137/100803067.

    [40]

    D. V. Nicolau Jr., J. P. Armitage and P. K. Maini, Directional persistence and the optimality of run-and-tumble chemotaxis, Comp. Biol. and Chem., 33 (2009), 269-274.doi: 10.1016/j.compbiolchem.2009.06.003.

    [41]

    H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392.

    [42]

    C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.doi: 10.1007/BF02476407.

    [43]

    J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol., 6 (2010), e1000890, 12pp.doi: 10.1371/journal.pcbi.1000890.

    [44]

    J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave, PNAS, 108 (2011), 16235-16240.doi: 10.1073/pnas.1101996108.

    [45]

    M. J. Schnitzer, Theory of continuum random walks and application to chemotaxis, Phys. Rev. E, 48 (1993), 2553-2568.doi: 10.1103/PhysRevE.48.2553.

    [46]

    N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis, Kinet. Relat. Models, 3 (2010), 501-528.doi: 10.3934/krm.2010.3.501.

    [47]

    C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp.doi: 10.1090/S0065-9266-09-00567-5.

    [48]

    C. Xue, H. J. Hwang, K. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733.doi: 10.1007/s11538-010-9586-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return